BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 9163365)

  • 1. Two-tone distortion on the basilar membrane of the chinchilla cochlea.
    Robles L; Ruggero MA; Rich NC
    J Neurophysiol; 1997 May; 77(5):2385-99. PubMed ID: 9163365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indications of different distortion product otoacoustic emission mechanisms from a detailed f1,f2 area study.
    Knight RD; Kemp DT
    J Acoust Soc Am; 2000 Jan; 107(1):457-73. PubMed ID: 10641654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cochlear nonlinearities inferred from two-tone distortion products in the ear canal of the alligator lizard.
    Rosowski JJ; Peake WT; White JR
    Hear Res; 1984 Feb; 13(2):141-58. PubMed ID: 6715262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitive response to low-frequency cochlear distortion products in the auditory midbrain.
    Abel C; Kössl M
    J Neurophysiol; 2009 Mar; 101(3):1560-74. PubMed ID: 19036870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2f1-f2 distortion product otoacoustic emissions in White Leghorn chickens (Gallus domesticus): effects of frequency ratio and relative level.
    Burkard R; Salvi R; Chen L
    Audiol Neurootol; 1996; 1(4):197-213. PubMed ID: 9390802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Locus of generation for the 2f1-f2 vs 2f2-f1 distortion-product otoacoustic emissions in normal-hearing humans revealed by suppression tuning, onset latencies, and amplitude correlations.
    Martin GK; Jassir D; Stagner BB; Whitehead ML; Lonsbury-Martin BL
    J Acoust Soc Am; 1998 Apr; 103(4):1957-71. PubMed ID: 9566319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Suppression tuning characteristics of the 2f1-f2 distortion product in cochlear microphonics and otoacoustic emissions].
    Fujimura K; Yoshida M; Makishima K
    Nihon Jibiinkoka Gakkai Kaiho; 1997 Aug; 100(8):839-45. PubMed ID: 9293764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of primary frequencies ratio on distortion product otoacoustic emissions amplitude. II. Interrelations between multicomponent DPOAEs, tone-burst-evoked OAEs, and spontaneous OAEs.
    Moulin A
    J Acoust Soc Am; 2000 Mar; 107(3):1471-86. PubMed ID: 10738802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrically evoked cubic distortion product otoacoustic emissions from gerbil cochlea.
    Ren T; Nuttall AL; Miller JM
    Hear Res; 1996 Dec; 102(1-2):43-50. PubMed ID: 8951449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distortion product otoacoustic emissions and basilar membrane vibration in the 6-9 kHz region of sensitive chinchilla cochleae.
    Rhode WS
    J Acoust Soc Am; 2007 Nov; 122(5):2725-37. PubMed ID: 18189565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distortion product otoacoustic emission test performance when both 2f1-f2 and 2f2-f1 are used to predict auditory status.
    Gorga MP; Nelson K; Davis T; Dorn PA; Neely ST
    J Acoust Soc Am; 2000 Apr; 107(4):2128-35. PubMed ID: 10790038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-tone distortion at different longitudinal locations on the basilar membrane.
    He W; Nuttall AL; Ren T
    Hear Res; 2007 Jun; 228(1-2):112-22. PubMed ID: 17353104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of systematic primary-tone level variation L2-L1 on the acoustic distortion product emission 2f1-f2 in normal human ears.
    Hauser R; Probst R
    J Acoust Soc Am; 1991 Jan; 89(1):280-6. PubMed ID: 2002169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical significance of probe-tone frequency ratio on distortion product otoacoustic emissions.
    Nielsen LH; Popelka GR; Rasmussen AN; Osterhammel PA
    Scand Audiol; 1993; 22(3):159-64. PubMed ID: 8210955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Psychophysical tuning curves for combination tones 2f1-f2 and f2-f1.
    Formby C; Sachs RM
    J Acoust Soc Am; 1980 May; 67(5):1754-8. PubMed ID: 7372931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic distortion products in rabbit ear canal. II. Sites of origin revealed by suppression contours and pure-tone exposures.
    Martin GK; Lonsbury-Martin BL; Probst R; Scheinin SA; Coats AC
    Hear Res; 1987; 28(2-3):191-208. PubMed ID: 3654389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Otoacoustic emissions from the cochlea of the 'constant frequency' bats, Pteronotus parnellii and Rhinolophus rouxi.
    Kössl M
    Hear Res; 1994 Jan; 72(1-2):59-72. PubMed ID: 8150746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the 2f
    Wen H; Bowling T; Meaud J
    Hear Res; 2018 Aug; 365():127-140. PubMed ID: 29801982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical responses to two-tone distortion products in the apical and basal turns of the mammalian cochlea.
    Cooper NP; Rhode WS
    J Neurophysiol; 1997 Jul; 78(1):261-70. PubMed ID: 9242278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra.
    Lai J; Bartlett EL
    Hear Res; 2015 Sep; 327():186-98. PubMed ID: 26232530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.