BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 9163366)

  • 1. Pharmacological evidence for two types of postsynaptic glycinergic receptors on the Mauthner cell of 52-h-old zebrafish larvae.
    Legendre P
    J Neurophysiol; 1997 May; 77(5):2400-15. PubMed ID: 9163366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of spontaneous glycinergic currents in the Mauthner neuron of the zebrafish embryo.
    Ali DW; Drapeau P; Legendre P
    J Neurophysiol; 2000 Oct; 84(4):1726-36. PubMed ID: 11024065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of single-channel properties to the time course and amplitude variance of quantal glycine currents recorded in rat motoneurons.
    Singer JH; Berger AJ
    J Neurophysiol; 1999 Apr; 81(4):1608-16. PubMed ID: 10200197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycinergic inhibitory synaptic currents and related receptor channels in the zebrafish brain.
    Legendre P; Korn H
    Eur J Neurosci; 1994 Oct; 6(10):1544-57. PubMed ID: 7531579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct physiological mechanisms underlie altered glycinergic synaptic transmission in the murine mutants spastic, spasmodic, and oscillator.
    Graham BA; Schofield PR; Sah P; Margrie TW; Callister RJ
    J Neurosci; 2006 May; 26(18):4880-90. PubMed ID: 16672662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition from GABAergic to glycinergic synaptic transmission in newly formed spinal networks.
    Gao BX; Stricker C; Ziskind-Conhaim L
    J Neurophysiol; 2001 Jul; 86(1):492-502. PubMed ID: 11431527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voltage dependence of conductance changes evoked by glycine release in the zebrafish brain.
    Legendre P; Korn H
    J Neurophysiol; 1995 Jun; 73(6):2404-12. PubMed ID: 7666148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A reluctant gating mode of glycine receptor channels determines the time course of inhibitory miniature synaptic events in zebrafish hindbrain neurons.
    Legendre P
    J Neurosci; 1998 Apr; 18(8):2856-70. PubMed ID: 9526003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacological characterization of glycine-gated chloride currents recorded in rat hippocampal slices.
    Chattipakorn SC; McMahon LL
    J Neurophysiol; 2002 Mar; 87(3):1515-25. PubMed ID: 11877523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneity of postsynaptic receptor occupancy fluctuations among glycinergic inhibitory synapses in the zebrafish hindbrain.
    Rigo JM; Badiu CI; Legendre P
    J Physiol; 2003 Dec; 553(Pt 3):819-32. PubMed ID: 14500774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitory synaptic transmission differs in mouse type A and B medial vestibular nucleus neurons in vitro.
    Camp AJ; Callister RJ; Brichta AM
    J Neurophysiol; 2006 May; 95(5):3208-18. PubMed ID: 16407430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of spontaneous inhibitory synaptic currents in cultured rat spinal cord and medullary neurons.
    Lewis CA; Faber DS
    J Neurophysiol; 1996 Jul; 76(1):448-60. PubMed ID: 8836236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GABAA and glycine receptor-mediated transmission in rat lamina II neurones: relevance to the analgesic actions of neuroactive steroids.
    Mitchell EA; Gentet LJ; Dempster J; Belelli D
    J Physiol; 2007 Sep; 583(Pt 3):1021-40. PubMed ID: 17656439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-affinity zinc potentiation of inhibitory postsynaptic glycinergic currents in the zebrafish hindbrain.
    Suwa H; Saint-Amant L; Triller A; Drapeau P; Legendre P
    J Neurophysiol; 2001 Feb; 85(2):912-25. PubMed ID: 11160522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Respiratory rhythm generation and synaptic inhibition of expiratory neurons in pre-Bötzinger complex: differential roles of glycinergic and GABAergic neural transmission.
    Shao XM; Feldman JL
    J Neurophysiol; 1997 Apr; 77(4):1853-60. PubMed ID: 9114241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage dependence of the glycine receptor-channel kinetics in the zebrafish hindbrain.
    Legendre P
    J Neurophysiol; 1999 Nov; 82(5):2120-9. PubMed ID: 10561392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slow inhibitory potentials in the teleost Mauthner cell.
    Hatta K; Ankri N; Faber DS; Korn H
    Neuroscience; 2001; 103(2):561-79. PubMed ID: 11246169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency-dependent modulation of glycine receptor activation recorded from the zebrafish larvae hindbrain.
    Rigo JM; Legendre P
    Neuroscience; 2006 Jun; 140(2):389-402. PubMed ID: 16564635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterisation of inhibitory and excitatory postsynaptic currents of the rat medial superior olive.
    Smith AJ; Owens S; Forsythe ID
    J Physiol; 2000 Dec; 529 Pt 3(Pt 3):681-98. PubMed ID: 11118498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of H+ modulation of glycinergic response in rat sacral dorsal commissural neurons.
    Li YF; Wu LJ; Li Y; Xu L; Xu TL
    J Physiol; 2003 Oct; 552(Pt 1):73-87. PubMed ID: 12855675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.