These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 9163824)

  • 1. Design strategies of sea urchin teeth: structure, composition and micromechanical relations to function.
    Wang RZ; Addadi L; Weiner S
    Philos Trans R Soc Lond B Biol Sci; 1997 Apr; 352(1352):469-80. PubMed ID: 9163824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailored order: the mesocrystalline nature of sea urchin teeth.
    Goetz AJ; Griesshaber E; Abel R; Fehr T; Ruthensteiner B; Schmahl WW
    Acta Biomater; 2014 Sep; 10(9):3885-98. PubMed ID: 24937138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of calcite co-orientation in the sea urchin tooth.
    Killian CE; Metzler RA; Gong YU; Olson IC; Aizenberg J; Politi Y; Wilt FH; Scholl A; Young A; Doran A; Kunz M; Tamura N; Coppersmith SN; Gilbert PU
    J Am Chem Soc; 2009 Dec; 131(51):18404-9. PubMed ID: 19954232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synchrotron X-ray studies of the keel of the short-spined sea urchin Lytechinus variegatus: absorption microtomography (microCT) and small beam diffraction mapping.
    Stock SR; Barss J; Dahl T; Veis A; Almer JD; Carlo F
    Calcif Tissue Int; 2003 May; 72(5):555-66. PubMed ID: 12721775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The grinding tip of the sea urchin tooth exhibits exquisite control over calcite crystal orientation and Mg distribution.
    Ma Y; Aichmayer B; Paris O; Fratzl P; Meibom A; Metzler RA; Politi Y; Addadi L; Gilbert PU; Weiner S
    Proc Natl Acad Sci U S A; 2009 Apr; 106(15):6048-53. PubMed ID: 19332795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase.
    Politi Y; Arad T; Klein E; Weiner S; Addadi L
    Science; 2004 Nov; 306(5699):1161-4. PubMed ID: 15539597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sea urchins have teeth? A review of their microstructure, biomineralization, development and mechanical properties.
    Stock SR
    Connect Tissue Res; 2014; 55(1):41-51. PubMed ID: 24437604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray absorption microtomography (microCT) and small beam diffraction mapping of sea urchin teeth.
    Stock SR; Barss J; Dahl T; Veis A; Almer JD
    J Struct Biol; 2002 Jul; 139(1):1-12. PubMed ID: 12372315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large area sub-micron chemical imaging of magnesium in sea urchin teeth.
    Masic A; Weaver JC
    J Struct Biol; 2015 Mar; 189(3):269-75. PubMed ID: 25557499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sea urchin tooth mineralization: calcite present early in the aboral plumula.
    Stock SR; Veis A; Xiao X; Almer JD; Dorvee JR
    J Struct Biol; 2012 Nov; 180(2):280-9. PubMed ID: 22940703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional microarchitecture of the plates (primary, secondary, and carinar process) in the developing tooth of Lytechinus variegatus revealed by synchrotron X-ray absorption microtomography (microCT).
    Stock SR; Ignatiev KI; Dahl T; Veis A; De Carlo F
    J Struct Biol; 2003 Dec; 144(3):282-300. PubMed ID: 14643197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastructural organization and micromechanical properties of shark tooth enameloid.
    Enax J; Janus AM; Raabe D; Epple M; Fabritius HO
    Acta Biomater; 2014 Sep; 10(9):3959-68. PubMed ID: 24797528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the formation and functions of high and very high magnesium calcites in the continuously growing teeth of the echinoderm Lytechinus variegatus: development of crystallinity and protein involvement.
    Veis A; Stock SR; Alvares K; Lux E
    Cells Tissues Organs; 2011; 194(2-4):131-7. PubMed ID: 21555859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure, composition and mechanical relations to function in sea urchin spine.
    Moureaux C; Pérez-Huerta A; Compère P; Zhu W; Leloup T; Cusack M; Dubois P
    J Struct Biol; 2010 Apr; 170(1):41-9. PubMed ID: 20064619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcite orientations and composition ranges within teeth across Echinoidea.
    Stock SR; Ignatiev K; Lee PL; Almer JD
    Connect Tissue Res; 2014 Aug; 55 Suppl 1(0 1):48-52. PubMed ID: 25158180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mineral-related proteins of sea urchin teeth: Lytechinus variegatus.
    Veis A; Barss J; Dahl T; Rahima M; Stock S
    Microsc Res Tech; 2002 Dec; 59(5):342-51. PubMed ID: 12430165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-property relationships of a biological mesocrystal in the adult sea urchin spine.
    Seto J; Ma Y; Davis SA; Meldrum F; Gourrier A; Kim YY; Schilde U; Sztucki M; Burghammer M; Maltsev S; Jäger C; Cölfen H
    Proc Natl Acad Sci U S A; 2012 Mar; 109(10):3699-704. PubMed ID: 22343283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coexistence of amorphous and crystalline calcium carbonate in skeletal tissues.
    Aizenberg J; Weiner S; Addadi L
    Connect Tissue Res; 2003; 44 Suppl 1():20-5. PubMed ID: 12952169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mineral phase in the cuticles of two species of Crustacea consists of magnesium calcite, amorphous calcium carbonate, and amorphous calcium phosphate.
    Becker A; Ziegler A; Epple M
    Dalton Trans; 2005 May; (10):1814-20. PubMed ID: 15877152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transmission electron microscopy characterization of macromolecular domain cavities and microstructure of single-crystal calcite tooth plates of the sea urchin Lytechinus variegatus.
    Robach JS; Stock SR; Veis A
    J Struct Biol; 2005 Jul; 151(1):18-29. PubMed ID: 15890529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.