These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 9163824)

  • 21. Mapping of magnesium and of different protein fragments in sea urchin teeth via secondary ion mass spectroscopy.
    Robach JS; Stock SR; Veis A
    J Struct Biol; 2006 Jul; 155(1):87-95. PubMed ID: 16675267
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure of first- and second-stage mineralized elements in teeth of the sea urchin Lytechinus variegatus.
    Robach JS; Stock SR; Veis A
    J Struct Biol; 2009 Dec; 168(3):452-66. PubMed ID: 19616101
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrastructural studies of regenerating spines of the sea urchin Strongylocentrotus purpuratus. I. Cell types without spherules.
    Heatfield BM; Travis DF
    J Morphol; 1975 Jan; 145(1):13-49. PubMed ID: 1111423
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A technique for detecting matrix proteins in the crystalline spicule of the sea urchin embryo.
    Cho JW; Partin JS; Lennarz WJ
    Proc Natl Acad Sci U S A; 1996 Feb; 93(3):1282-6. PubMed ID: 8577755
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cellular control over spicule formation in sea urchin embryos: A structural approach.
    Beniash E; Addadi L; Weiner S
    J Struct Biol; 1999 Mar; 125(1):50-62. PubMed ID: 10196116
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Polycristalline calcite in sea urchins (Echinodermata, Echinoidea)].
    Märkel K; Kubanek F; Willgallis A
    Z Zellforsch Mikrosk Anat; 1971; 119(3):355-77. PubMed ID: 5569052
    [No Abstract]   [Full Text] [Related]  

  • 27. Warming influences Mg2+ content, while warming and acidification influence calcification and test strength of a sea urchin.
    Byrne M; Smith AM; West S; Collard M; Dubois P; Graba-landry A; Dworjanyn SA
    Environ Sci Technol; 2014 Nov; 48(21):12620-7. PubMed ID: 25252045
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple microscopy modalities applied to a sea urchin tooth fragment.
    Stock SR; Ignatiev K; Dahl T; Barss J; Fezzaa K; Veis A; Lee WK; De Carlo F
    J Synchrotron Radiat; 2003 Sep; 10(Pt 5):393-7. PubMed ID: 12944629
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functionalization of biomineral reinforcement in crustacean cuticle: Calcite orientation in the partes incisivae of the mandibles of Porcellio scaber and the supralittoral species Tylos europaeus (Oniscidea, Isopoda).
    Huber J; Griesshaber E; Nindiyasari F; Schmahl WW; Ziegler A
    J Struct Biol; 2015 May; 190(2):173-91. PubMed ID: 25818510
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Organic matrix-related mineralization of sea urchin spicules, spines, test and teeth.
    Veis A
    Front Biosci (Landmark Ed); 2011 Jun; 16(7):2540-60. PubMed ID: 21622194
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Matrix proteins of the teeth of the sea urchin Lytechinus variegatus.
    Veis DJ; Albinger TM; Clohisy J; Rahima M; Sabsay B; Veis A
    J Exp Zool; 1986 Oct; 240(1):35-46. PubMed ID: 3095485
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of ocean acidification and diet on thickness and carbonate elemental composition of the test of juvenile sea urchins.
    Asnaghi V; Mangialajo L; Gattuso JP; Francour P; Privitera D; Chiantore M
    Mar Environ Res; 2014 Feb; 93():78-84. PubMed ID: 24050836
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomineralization of the spicules of sea urchin embryos.
    Wilt FH
    Zoolog Sci; 2002 Mar; 19(3):253-61. PubMed ID: 12125922
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molding mineral within microporous hydrogels by a polymer-induced liquid-precursor (PILP) process.
    Cheng X; Gower LB
    Biotechnol Prog; 2006; 22(1):141-9. PubMed ID: 16454504
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of crocodile teeth: correlation of composition, microstructure, and hardness.
    Enax J; Fabritius HO; Rack A; Prymak O; Raabe D; Epple M
    J Struct Biol; 2013 Nov; 184(2):155-63. PubMed ID: 24091039
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Roles of larval sea urchin spicule SM50 domains in organic matrix self-assembly and calcium carbonate mineralization.
    Rao A; Seto J; Berg JK; Kreft SG; Scheffner M; Cölfen H
    J Struct Biol; 2013 Aug; 183(2):205-15. PubMed ID: 23796503
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure, composition, and mechanical properties of shark teeth.
    Enax J; Prymak O; Raabe D; Epple M
    J Struct Biol; 2012 Jun; 178(3):290-9. PubMed ID: 22503701
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A minimal molecular toolkit for mineral deposition? Biochemistry and proteomics of the test matrix of adult specimens of the sea urchin Paracentrotus lividus.
    Karakostis K; Zanella-Cléon I; Immel F; Guichard N; Dru P; Lepage T; Plasseraud L; Matranga V; Marin F
    J Proteomics; 2016 Mar; 136():133-44. PubMed ID: 26778142
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of two distinctly different mineral-related proteins from the teeth of the Camarodont sea urchin Lytechinus variegatus: Specificity of function with relation to mineralization.
    Veis A; Alvares K; Dixit SN; Robach JS; Stock SR
    Front Mater Sci China; 2009 Jun; 3(2):163-168. PubMed ID: 20865144
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Atomic force microscopy study of tooth surfaces.
    Farina M; Schemmel A; Weissmüller G; Cruz R; Kachar B; Bisch PM
    J Struct Biol; 1999 Mar; 125(1):39-49. PubMed ID: 10196115
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.