These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 9164993)
1. Small changes of dietary (n-6) and (n-3)/fatty acid content ration alter phosphatidylethanolamine and phosphatidylcholine fatty acid composition during development of neuronal and glial cells in rats. Jumpsen J; Lien EL; Goh YK; Clandinin MT J Nutr; 1997 May; 127(5):724-31. PubMed ID: 9164993 [TBL] [Abstract][Full Text] [Related]
2. Maternal dietary 22 : 6n-3 is more effective than 18 : 3n-3 in increasing the 22 : 6n-3 content in phospholipids of glial cells from neonatal rat brain. Bowen RA; Clandinin MT Br J Nutr; 2005 May; 93(5):601-11. PubMed ID: 15975158 [TBL] [Abstract][Full Text] [Related]
3. During neuronal and glial cell development diet n-6 to n-3 fatty acid ratio alters the fatty acid composition of phosphatidylinositol and phosphatidylserine. Jumpsen JA; Lien EL; Goh YK; Clandinin MT Biochim Biophys Acta; 1997 Jul; 1347(1):40-50. PubMed ID: 9233685 [TBL] [Abstract][Full Text] [Related]
4. Formula 18:2(n-6) and 18:3(n-3) content and ratio influence long-chain polyunsaturated fatty acids in the developing piglet liver and central nervous system. Arbuckle LD; MacKinnon MJ; Innis SM J Nutr; 1994 Feb; 124(2):289-98. PubMed ID: 8308579 [TBL] [Abstract][Full Text] [Related]
5. Modification of milk formula to enhance accretion of long-chain n-6 and n-3 polyunsaturated fatty acids in artificially reared infant rats. Yeh YY; Yeh SM; Lien EL Lipids; 1998 May; 33(5):513-20. PubMed ID: 9625599 [TBL] [Abstract][Full Text] [Related]
6. Dietary 20:4n-6 and 22:6n-3 modulates the profile of long- and very-long-chain fatty acids, rhodopsin content, and kinetics in developing photoreceptor cells. Suh M; Wierzbicki AA; Lien EL; Clandinin MT Pediatr Res; 2000 Oct; 48(4):524-30. PubMed ID: 11004245 [TBL] [Abstract][Full Text] [Related]
7. Behavioral responses are altered in piglets with decreased frontal cortex docosahexaenoic acid. Ng KF; Innis SM J Nutr; 2003 Oct; 133(10):3222-7. PubMed ID: 14519814 [TBL] [Abstract][Full Text] [Related]
8. Effects of postnatal ethanol exposure on brain growth and lipid composition in n-3 fatty acid-deficient and -adequate rats. Ward GR; Xing HC; Wainwright PE Lipids; 1999 Nov; 34(11):1177-86. PubMed ID: 10606040 [TBL] [Abstract][Full Text] [Related]
9. Long-chain polyunsaturated fatty acid levels in formulae influence deposition of docosahexaenoic acid and arachidonic acid in brain and red blood cells of artificially reared neonatal rats. Ward GR; Huang YS; Bobik E; Xing HC; Mutsaers L; Auestad N; Montalto M; Wainwright P J Nutr; 1998 Dec; 128(12):2473-87. PubMed ID: 9868196 [TBL] [Abstract][Full Text] [Related]
10. Chronic dietary n-3 polyunsaturated fatty acids deficiency affects the fatty acid composition of plasmenylethanolamine and phosphatidylethanolamine differently in rat frontal cortex, striatum, and cerebellum. Favrelière S; Barrier L; Durand G; Chalon S; Tallineau C Lipids; 1998 Apr; 33(4):401-7. PubMed ID: 9590628 [TBL] [Abstract][Full Text] [Related]
11. Modulation of essential (n-6):(n-3) fatty acid ratios alters fatty acid status but not bone mass in piglets. Weiler HA; Fitzpatrick-Wong SC J Nutr; 2002 Sep; 132(9):2667-72. PubMed ID: 12221227 [TBL] [Abstract][Full Text] [Related]
12. Arachidonate and docosahexaenoate added to infant formula influence fatty acid composition and subsequent eicosanoid production in neonatal pigs. Huang MC; Craig-Schmidt MC J Nutr; 1996 Sep; 126(9):2199-208. PubMed ID: 8814208 [TBL] [Abstract][Full Text] [Related]
13. Relationship between dietary supply of long-chain fatty acids and membrane composition of long- and very long chain essential fatty acids in developing rat photoreceptors. Suh M; Wierzbicki AA; Lien E; Clandinin MT Lipids; 1996 Jan; 31(1):61-4. PubMed ID: 8649235 [TBL] [Abstract][Full Text] [Related]
15. The effect of dietary lipid manipulation on hepatic mitochondrial phospholipid fatty acid composition and carnitine palmitoyltransferase I activity. Power GW; Yaqoob P; Harvey DJ; Newsholme EA; Calder PC Biochem Mol Biol Int; 1994 Oct; 34(4):671-84. PubMed ID: 7866292 [TBL] [Abstract][Full Text] [Related]
16. Dietary long-chain fatty acids and visual response in malnourished nursing infants. Marín MC; Rey GE; Pedersolí LC; Rodrigo MA; de Alaniz MJ Prostaglandins Leukot Essent Fatty Acids; 2000 Dec; 63(6):385-90. PubMed ID: 11133176 [TBL] [Abstract][Full Text] [Related]
17. Does increasing dietary linolenic acid content increase the docosahexaenoic acid content of phospholipids in neuronal cells of neonatal rats? Bowen RA; Wierzbicki AA; Clandinin MT Pediatr Res; 1999 Jun; 45(6):815-9. PubMed ID: 10367771 [TBL] [Abstract][Full Text] [Related]
18. The role of n-3 polyunsaturated fatty acids in brain: modulation of rat brain gene expression by dietary n-3 fatty acids. Kitajka K; Puskás LG; Zvara A; Hackler L; Barceló-Coblijn G; Yeo YK; Farkas T Proc Natl Acad Sci U S A; 2002 Mar; 99(5):2619-24. PubMed ID: 11880617 [TBL] [Abstract][Full Text] [Related]