BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 9165103)

  • 1. A nuclear paramagnetic relaxation study of the interaction of the cyclopentanedione substrate with chloroperoxidase.
    Wang X; Goff HM
    Biochim Biophys Acta; 1997 Apr; 1339(1):88-96. PubMed ID: 9165103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structures of chloroperoxidase with its bound substrates and complexed with formate, acetate, and nitrate.
    Kühnel K; Blankenfeldt W; Terner J; Schlichting I
    J Biol Chem; 2006 Aug; 281(33):23990-8. PubMed ID: 16790441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paramagnetic nuclear magnetic resonance relaxation and molecular mechanics studies of the chloroperoxidase-indole complex: insights into the mechanism of chloroperoxidase-catalyzed regioselective oxidation of indole.
    Zhang R; He Q; Chatfield D; Wang X
    Biochemistry; 2013 May; 52(21):3688-701. PubMed ID: 23634952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional NMR study of the heme active site structure of chloroperoxidase.
    Wang X; Tachikawa H; Yi X; Manoj KM; Hager LP
    J Biol Chem; 2003 Mar; 278(10):7765-74. PubMed ID: 12488315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The chloroperoxidase-catalyzed oxidation of phenols. Mechanism, selectivity, and characterization of enzyme-substrate complexes.
    Casella L; Poli S; Gullotti M; Selvaggini C; Beringhelli T; Marchesini A
    Biochemistry; 1994 May; 33(21):6377-86. PubMed ID: 8204570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of enantioselective oxygenation of sulfides catalyzed by chloroperoxidase and horseradish peroxidase. Spectral studies and characterization of enzyme-substrate complexes.
    Casella L; Gullotti M; Ghezzi R; Poli S; Beringhelli T; Colonna S; Carrea G
    Biochemistry; 1992 Oct; 31(39):9451-9. PubMed ID: 1390727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stereochemistry of the chloroperoxidase active site: crystallographic and molecular-modeling studies.
    Sundaramoorthy M; Terner J; Poulos TL
    Chem Biol; 1998 Sep; 5(9):461-73. PubMed ID: 9751642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deactivation mechanisms of chloroperoxidase during biotransformations.
    Park JB; Clark DS
    Biotechnol Bioeng; 2006 Apr; 93(6):1190-5. PubMed ID: 16425305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton nuclear Overhauser effect study of the heme active site structure of chloroperoxidase.
    Dugad LB; Wang X; Wang CC; Lukat GS; Goff HM
    Biochemistry; 1992 Feb; 31(6):1651-5. PubMed ID: 1737022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The crystal structure of chloroperoxidase: a heme peroxidase--cytochrome P450 functional hybrid.
    Sundaramoorthy M; Terner J; Poulos TL
    Structure; 1995 Dec; 3(12):1367-77. PubMed ID: 8747463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of chloroperoxidase stability by covalent immobilization on chitosan membranes.
    Zhang LH; Bai CH; Wang YS; Jiang YC; Hu MC; Li SN; Zhai QG
    Biotechnol Lett; 2009 Aug; 31(8):1269-72. PubMed ID: 19404743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic active site analogues of heme-thiolate proteins. Characterization and identification of intermediates of the catalytic cycles of cytochrome P450cam and chloroperoxidase.
    Woggon WD; Wagenknecht HA; Claude C
    J Inorg Biochem; 2001 Feb; 83(4):289-300. PubMed ID: 11293549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of substrate, protein environment, and proximal ligand mutation on compound I and compound 0 of chloroperoxidase.
    Lai W; Chen H; Cho KB; Shaik S
    J Phys Chem A; 2009 Oct; 113(43):11763-71. PubMed ID: 19572690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum mechanical/molecular mechanical study on the mechanisms of compound I formation in the catalytic cycle of chloroperoxidase: an overview on heme enzymes.
    Chen H; Hirao H; Derat E; Schlichting I; Shaik S
    J Phys Chem B; 2008 Aug; 112(31):9490-500. PubMed ID: 18597525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonance Raman spectroscopy of chloroperoxidase compound II provides direct evidence for the existence of an iron(IV)-hydroxide.
    Stone KL; Behan RK; Green MT
    Proc Natl Acad Sci U S A; 2006 Aug; 103(33):12307-10. PubMed ID: 16895990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monoterpenes as novel substrates for oxidation and halo-hydroxylation with chloroperoxidase from Caldariomyces fumago.
    Kaup BA; Piantini U; Wüst M; Schrader J
    Appl Microbiol Biotechnol; 2007 Jan; 73(5):1087-96. PubMed ID: 17028875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple catalytic roles of chloroperoxidase in the transformation of phenol: Products and pathways.
    Wang K; Huang X; Lin K
    Ecotoxicol Environ Saf; 2019 Sep; 179():96-103. PubMed ID: 31026755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton and nitrogen-15 NMR spectroscopic studies of hydrogen ion-dependent pseudo-halide ion binding to chloroperoxidase.
    Lukat GS; Goff HM
    J Biol Chem; 1986 Dec; 261(35):16528-34. PubMed ID: 3023353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-frequency dynamics of Caldariomyces fumago chloroperoxidase probed by femtosecond coherence spectroscopy.
    Gruia F; Ionascu D; Kubo M; Ye X; Dawson J; Osborne RL; Sligar SG; Denisov I; Das A; Poulos TL; Terner J; Champion PM
    Biochemistry; 2008 May; 47(18):5156-67. PubMed ID: 18407660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mass spectrometric investigation of native and oxidatively inactivated chloroperoxidase.
    Grey CE; Hedström M; Adlercreutz P
    Chembiochem; 2007 Jun; 8(9):1055-62. PubMed ID: 17492739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.