These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 9165355)

  • 41. Impact of occupational noise on pure-tone threshold and distortion product otoacoustic emissions after one workday.
    Müller J; Janssen T
    Hear Res; 2008 Dec; 246(1-2):9-22. PubMed ID: 18848612
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Otoacoustic emission amplification after inner hair cell damage.
    Wake M; Anderson J; Takeno S; Mount RJ; Harrison RV
    Acta Otolaryngol; 1996 May; 116(3):374-81. PubMed ID: 8790735
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The relationship among distortion-product otoacoustic emissions, evoked potential thresholds, and outer hair cells following interrupted noise exposures.
    Subramaniam M; Henderson D; Spongr V
    Ear Hear; 1994 Aug; 15(4):299-309. PubMed ID: 7958529
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prestin regulation and function in residual outer hair cells after noise-induced hearing loss.
    Xia A; Song Y; Wang R; Gao SS; Clifton W; Raphael P; Chao SI; Pereira FA; Groves AK; Oghalai JS
    PLoS One; 2013; 8(12):e82602. PubMed ID: 24376553
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reduction in impulse noise-induced permanent threshold shift with intracochlear application of an NADPH oxidase inhibitor.
    Bielefeld EC
    J Am Acad Audiol; 2013 Jun; 24(6):461-73. PubMed ID: 23886424
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Efferent feedback minimizes cochlear neuropathy from moderate noise exposure.
    Maison SF; Usubuchi H; Liberman MC
    J Neurosci; 2013 Mar; 33(13):5542-52. PubMed ID: 23536069
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chronic strychnine administration into the cochlea potentiates permanent threshold shift following noise exposure.
    Yamasoba T; Dolan DF
    Hear Res; 1997 Oct; 112(1-2):13-20. PubMed ID: 9367225
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantitative relationship of carboplatin dose to magnitude of inner and outer hair cell loss and the reduction in distortion product otoacoustic emission amplitude in chinchillas.
    Hofstetter P; Ding D; Powers N; Salvi RJ
    Hear Res; 1997 Oct; 112(1-2):199-215. PubMed ID: 9367242
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Otoacoustic emissions and recruitment].
    Konopka W; Olszewski J
    Otolaryngol Pol; 2005; 59(5):731-6. PubMed ID: 16471192
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Long-term effect of acoustic trauma on distortion product otoacoustic emissions in chickens.
    Froymovich O; Rebala V; Salvi RJ; Rassael H
    J Acoust Soc Am; 1995 May; 97(5 Pt 1):3021-9. PubMed ID: 7759642
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluating the protective role of the olivocochlear bundle against acoustic overexposure in rats by using Fos immunohistochemistry.
    Chen TJ; Chen SS; Hsieh YL
    J Neurol Sci; 2000 Aug; 177(2):104-13. PubMed ID: 10980306
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Morphological and functional preservation of the outer hair cells from noise trauma by sound conditioning.
    Canlon B; Fransson A
    Hear Res; 1995 Apr; 84(1-2):112-24. PubMed ID: 7642444
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Contralateral cochlear effects of ipsilateral damage: no evidence for interaural coupling.
    Larsen E; Liberman MC
    Hear Res; 2010 Feb; 260(1-2):70-80. PubMed ID: 19944141
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Postnatal maturation of contralateral DPOAE suppression in a precocious animal model (chinchilla) of the human neonate.
    Harrison RV; Konomi U; Kanotra S; James AL
    Acta Otolaryngol; 2013 Apr; 133(4):383-9. PubMed ID: 23373512
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of primary frequencies ratio on distortion product otoacoustic emissions amplitude. II. Interrelations between multicomponent DPOAEs, tone-burst-evoked OAEs, and spontaneous OAEs.
    Moulin A
    J Acoust Soc Am; 2000 Mar; 107(3):1471-86. PubMed ID: 10738802
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Unilateral hearing losses alter loud sound-induced temporary threshold shifts and efferent effects in the normal-hearing ear.
    Rajan R
    J Neurophysiol; 2001 Mar; 85(3):1257-69. PubMed ID: 11247994
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The behavior of acoustic distortion products in the ear canals of chinchillas with normal or damaged ears.
    Zurek PM; Clark WW; Kim DO
    J Acoust Soc Am; 1982 Sep; 72(3):774-80. PubMed ID: 7130536
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cochlear outer-hair-cell efferents and complex-sound-induced hearing loss: protective and opposing effects.
    Rajan R
    J Neurophysiol; 2001 Dec; 86(6):3073-6. PubMed ID: 11731564
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Spontaneous otoacoustic emissions and efferent control of cochlea].
    Xu J; Liu C; Guo L; Lian N; Liu B
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 2001 Dec; 36(6):436-40. PubMed ID: 12761959
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Efferent feedback slows cochlear aging.
    Liberman MC; Liberman LD; Maison SF
    J Neurosci; 2014 Mar; 34(13):4599-607. PubMed ID: 24672005
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.