These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 9165388)

  • 1. A uniform strain criterion for trabecular bone adaptation: do continuum-level strain gradients drive adaptation?
    Turner CH; Anne V; Pidaparti RM
    J Biomech; 1997 Jun; 30(6):555-63. PubMed ID: 9165388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Bone remodeling numerical simulation on the basis of bone adaptive theory].
    Chen B; Zhao W; Sun Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):363-7. PubMed ID: 18610623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure and shear stress in trabecular bone marrow during whole bone loading.
    Metzger TA; Schwaner SA; LaNeve AJ; Kreipke TC; Niebur GL
    J Biomech; 2015 Sep; 48(12):3035-43. PubMed ID: 26283413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional adaptation of cancellous bone in human proximal femur predicted by trabecular surface remodeling simulation toward uniform stress state.
    Tsubota K; Adachi T; Tomita Y
    J Biomech; 2002 Dec; 35(12):1541-51. PubMed ID: 12445607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Volume-based non-continuum modeling of bone functional adaptation.
    Wang Z; Mondry A
    Theor Biol Med Model; 2005 Feb; 2():6. PubMed ID: 15733328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered architecture and cell populations affect bone marrow mechanobiology in the osteoporotic human femur.
    Metzger TA; Vaughan TJ; McNamara LM; Niebur GL
    Biomech Model Mechanobiol; 2017 Jun; 16(3):841-850. PubMed ID: 27878399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The in situ mechanics of trabecular bone marrow: the potential for mechanobiological response.
    Metzger TA; Kreipke TC; Vaughan TJ; McNamara LM; Niebur GL
    J Biomech Eng; 2015 Jan; 137(1):. PubMed ID: 25363343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of homogenization theory to the study of trabecular bone mechanics.
    Hollister SJ; Fyhrie DP; Jepsen KJ; Goldstein SA
    J Biomech; 1991; 24(9):825-39. PubMed ID: 1752867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of a rat tail vertebra model for trabecular bone adaptation studies.
    Guo XE; Eichler MJ; Takai E; Kim CH
    J Biomech; 2002 Mar; 35(3):363-8. PubMed ID: 11858812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain energy density gradients in bone marrow predict osteoblast and osteoclast activity: a finite element study.
    Webster D; Schulte FA; Lambers FM; Kuhn G; Müller R
    J Biomech; 2015 Mar; 48(5):866-74. PubMed ID: 25601212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional micro-level computational study of Wolff's law via trabecular bone remodeling in the human proximal femur using design space topology optimization.
    Boyle C; Kim IY
    J Biomech; 2011 Mar; 44(5):935-42. PubMed ID: 21159341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model of bone adaptation as an optimization process.
    Bagge M
    J Biomech; 2000 Nov; 33(11):1349-57. PubMed ID: 10940393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependence of yield strain of human trabecular bone on anatomic site.
    Morgan EF; Keaveny TM
    J Biomech; 2001 May; 34(5):569-77. PubMed ID: 11311697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trabecular bone density and loading history: regulation of connective tissue biology by mechanical energy.
    Carter DR; Fyhrie DP; Whalen RT
    J Biomech; 1987; 20(8):785-94. PubMed ID: 3654678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress.
    Hollister SJ; Brennan JM; Kikuchi N
    J Biomech; 1994 Apr; 27(4):433-44. PubMed ID: 8188724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Full-field in vitro measurements and in silico predictions of strain shielding in the implanted femur after total hip arthroplasty.
    Chanda S; Dickinson A; Gupta S; Browne M
    Proc Inst Mech Eng H; 2015 Aug; 229(8):549-59. PubMed ID: 26112349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A theoretical framework for strain-related trabecular bone maintenance and adaptation.
    Ruimerman R; Hilbers P; van Rietbergen B; Huiskes R
    J Biomech; 2005 Apr; 38(4):931-41. PubMed ID: 15713314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trabecular bone adaptation with an orthotropic material model.
    Miller Z; Fuchs MB; Arcan M
    J Biomech; 2002 Feb; 35(2):247-56. PubMed ID: 11784543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical instabilities in bone remodeling simulations: the advantages of a node-based finite element approach.
    Jacobs CR; Levenston ME; Beaupré GS; Simo JC; Carter DR
    J Biomech; 1995 Apr; 28(4):449-59. PubMed ID: 7738054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of fabric in the large strain compressive behavior of human trabecular bone.
    Charlebois M; Pretterklieber M; Zysset PK
    J Biomech Eng; 2010 Dec; 132(12):121006. PubMed ID: 21142320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.