These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 9165393)

  • 1. Muscle coordination of maximum-speed pedaling.
    Raasch CC; Zajac FE; Ma B; Levine WS
    J Biomech; 1997 Jun; 30(6):595-602. PubMed ID: 9165393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locomotor strategy for pedaling: muscle groups and biomechanical functions.
    Raasch CC; Zajac FE
    J Neurophysiol; 1999 Aug; 82(2):515-25. PubMed ID: 10444651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A state-space analysis of mechanical energy generation, absorption, and transfer during pedaling.
    Fregly BJ; Zajac FE
    J Biomech; 1996 Jan; 29(1):81-90. PubMed ID: 8839020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscular activity patterns in 1-legged vs. 2-legged pedaling.
    Park S; Caldwell GE
    J Sport Health Sci; 2021 Jan; 10(1):99-106. PubMed ID: 33518019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding muscle coordination of the human leg with dynamical simulations.
    Zajac FE
    J Biomech; 2002 Aug; 35(8):1011-8. PubMed ID: 12126660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutability of bifunctional thigh muscle activity in pedaling due to contralateral leg force generation.
    Kautz SA; Brown DA; Van der Loos HF; Zajac FE
    J Neurophysiol; 2002 Sep; 88(3):1308-17. PubMed ID: 12205152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle contributions to specific biomechanical functions do not change in forward versus backward pedaling.
    Neptune RR; Kautz SA; Zajac FE
    J Biomech; 2000 Feb; 33(2):155-64. PubMed ID: 10653028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of pedaling rate on muscle mechanical energy in low power recumbent pedaling using forward dynamic simulations.
    Hakansson NA; Hull ML
    IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):509-16. PubMed ID: 18198708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional roles of the leg muscles when pedaling in the recumbent versus the upright position.
    Hakansson NA; Hull ML
    J Biomech Eng; 2005 Apr; 127(2):301-10. PubMed ID: 15971708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force-velocity relationship in cycling revisited: benefit of two-dimensional pedal forces analysis.
    Dorel S; Couturier A; Lacour JR; Vandewalle H; Hautier C; Hug F
    Med Sci Sports Exerc; 2010 Jun; 42(6):1174-83. PubMed ID: 19997017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crank inertial load has little effect on steady-state pedaling coordination.
    Fregly BJ; Zajac FE; Dairaghi CA
    J Biomech; 1996 Dec; 29(12):1559-67. PubMed ID: 8945654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contralateral movement and extensor force generation alter flexion phase muscle coordination in pedaling.
    Ting LH; Kautz SA; Brown DA; Zajac FE
    J Neurophysiol; 2000 Jun; 83(6):3351-65. PubMed ID: 10848554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of pedaling rate on coordination in cycling.
    Neptune RR; Kautz SA; Hull ML
    J Biomech; 1997 Oct; 30(10):1051-8. PubMed ID: 9391872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation analysis of muscle activity changes with altered body orientations during pedaling.
    Chen G; Kautz SA; Zajac FE
    J Biomech; 2001 Jun; 34(6):749-56. PubMed ID: 11470112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Why does power output decrease at high pedaling rates during sprint cycling?
    Samozino P; Horvais N; Hintzy F
    Med Sci Sports Exerc; 2007 Apr; 39(4):680-7. PubMed ID: 17414806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related differences in adaptation during childhood: the influences of muscular power production and segmental energy flow caused by muscles.
    Korff T; Jensen JL
    Exp Brain Res; 2007 Mar; 177(3):291-303. PubMed ID: 17019608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase reversal of biomechanical functions and muscle activity in backward pedaling.
    Ting LH; Kautz SA; Brown DA; Zajac FE
    J Neurophysiol; 1999 Feb; 81(2):544-51. PubMed ID: 10036258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Pedal Speed and Crank Length on Pedaling Mechanics during Submaximal Cycling.
    Barratt PR; Martin JC; Elmer SJ; Korff T
    Med Sci Sports Exerc; 2016 Apr; 48(4):705-13. PubMed ID: 26559455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of bicycle seat tube angle and hand position on lower extremity kinematics and neuromuscular control: implications for triathlon running performance.
    Silder A; Gleason K; Thelen DG
    J Appl Biomech; 2011 Nov; 27(4):297-305. PubMed ID: 21896955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.