These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 9165393)

  • 21. Muscle activity patterns altered during pedaling at different body orientations.
    Brown DA; Kautz SA; Dairaghi CA
    J Biomech; 1996 Oct; 29(10):1349-56. PubMed ID: 8884480
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Leg general muscle moment and power patterns in able-bodied subjects during recumbent cycle ergometry with ankle immobilization.
    Szecsi J; Straube A; Fornusek C
    Med Eng Phys; 2014 Nov; 36(11):1421-7. PubMed ID: 24924382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sensorimotor state of the contralateral leg affects ipsilateral muscle coordination of pedaling.
    Ting LH; Raasch CC; Brown DA; Kautz SA; Zajac FE
    J Neurophysiol; 1998 Sep; 80(3):1341-51. PubMed ID: 9744943
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intermuscular coherence contributions in synergistic muscles during pedaling.
    De Marchis C; Severini G; Castronovo AM; Schmid M; Conforto S
    Exp Brain Res; 2015 Jun; 233(6):1907-19. PubMed ID: 25821181
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direction-dependent phasing of locomotor muscle activity is altered post-stroke.
    Schindler-Ivens S; Brown DA; Brooke JD
    J Neurophysiol; 2004 Oct; 92(4):2207-16. PubMed ID: 15175363
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of crank length on joint-specific power during maximal cycling.
    Barratt PR; Korff T; Elmer SJ; Martin JC
    Med Sci Sports Exerc; 2011 Sep; 43(9):1689-97. PubMed ID: 21311357
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strategies for improving the pedaling technique.
    Duc S; Bertucci W; Grappe F
    J Sports Med Phys Fitness; 2019 Dec; 59(12):2030-2039. PubMed ID: 31933344
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Muscle force redistributes segmental power for body progression during walking.
    Neptune RR; Zajac FE; Kautz SA
    Gait Posture; 2004 Apr; 19(2):194-205. PubMed ID: 15013508
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Muscle coordination patterns for efficient cycling.
    Blake OM; Champoux Y; Wakeling JM
    Med Sci Sports Exerc; 2012 May; 44(5):926-38. PubMed ID: 22089483
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of pedaling rate on bilateral asymmetry in cycling.
    Smak W; Neptune RR; Hull ML
    J Biomech; 1999 Sep; 32(9):899-906. PubMed ID: 10460126
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantifying the hip-ankle synergy in short-term maximal cycling.
    Burnie L; Barratt P; Davids K; Worsfold P; Wheat J
    J Biomech; 2022 Sep; 142():111268. PubMed ID: 36030635
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A theoretical analysis of an optimal chainring shape to maximize crank power during isokinetic pedaling.
    Rankin JW; Neptune RR
    J Biomech; 2008; 41(7):1494-502. PubMed ID: 18395213
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Noncircular Chainrings Do Not Influence Maximum Cycling Power.
    Leong CH; Elmer SJ; Martin JC
    J Appl Biomech; 2017 Dec; 33(6):410-418. PubMed ID: 28605248
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The relationship between the kinematics of passive movement, the stretch of extensor muscles of the leg and the change induced in the gain of the soleus H reflex in humans.
    Cheng J; Brooke JD; Misiaszek JE; Staines WR
    Brain Res; 1995 Feb; 672(1-2):89-96. PubMed ID: 7749757
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Joint moment and muscle power output characteristics of below knee amputees during running: the influence of energy storing prosthetic feet.
    Czerniecki JM; Gitter A; Munro C
    J Biomech; 1991; 24(1):63-75. PubMed ID: 2026634
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of kinetics, kinematics, and electromyography during single-leg assisted and unassisted cycling.
    Bini RR; Jacques TC; Lanferdini FJ; Vaz MA
    J Strength Cond Res; 2015 Jun; 29(6):1534-41. PubMed ID: 25872025
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heterogeneous neuromuscular activation within human rectus femoris muscle during pedaling.
    Watanabe K; Kouzaki M; Moritani T
    Muscle Nerve; 2015 Sep; 52(3):404-11. PubMed ID: 25524446
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The association between negative muscle work and pedaling rate.
    Neptune RR; Herzog W
    J Biomech; 1999 Oct; 32(10):1021-6. PubMed ID: 10476840
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neuromuscular activation pattern of lower extremity muscles during pedaling in cyclists with single amputation of leg and with two legs: a case study.
    Watanabe K; Yamaguchi Y; Fukuda W; Nakazawa S; Kenjo T; Nishiyama T
    BMC Res Notes; 2020 Jun; 13(1):299. PubMed ID: 32571389
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Muscle stimulation waveform timing patterns for upper and lower leg muscle groups to increase muscular endurance in functional electrical stimulation pedaling using a forward dynamic model.
    Hakansson NA; Hull ML
    IEEE Trans Biomed Eng; 2009 Sep; 56(9):2263-70. PubMed ID: 19380265
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.