These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 9165393)

  • 41. Biomechanical determinants of pedaling energetics: internal and external work are not independent.
    Kautz SA; Neptune RR
    Exerc Sport Sci Rev; 2002 Oct; 30(4):159-65. PubMed ID: 12398112
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Muscle coordination while pulling up during cycling.
    Mornieux G; Gollhofer A; Stapelfeldt B
    Int J Sports Med; 2010 Dec; 31(12):843-6. PubMed ID: 20827654
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanical output from individual muscles during explosive leg extensions: the role of biarticular muscles.
    Jacobs R; Bobbert MF; van Ingen Schenau GJ
    J Biomech; 1996 Apr; 29(4):513-23. PubMed ID: 8964781
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Determinants of maximal cycling power: crank length, pedaling rate and pedal speed.
    Martin JC; Spirduso WW
    Eur J Appl Physiol; 2001 May; 84(5):413-8. PubMed ID: 11417428
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Muscle coordination limits efficiency and power output of human limb movement under a wide range of mechanical demands.
    Blake OM; Wakeling JM
    J Neurophysiol; 2015 Dec; 114(6):3283-95. PubMed ID: 26445873
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Motor strategies in landing from a jump: the role of skill in task execution.
    McKinley P; Pedotti A
    Exp Brain Res; 1992; 90(2):427-40. PubMed ID: 1397157
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Changes in Motor Coordination Induced by Local Fatigue during a Sprint Cycling Task.
    Brøchner Nielsen NP; Hug F; Guével A; Colloud F; Lardy J; Dorel S
    Med Sci Sports Exerc; 2018 Jul; 50(7):1394-1404. PubMed ID: 29432323
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The control of mono-articular muscles in multijoint leg extensions in man.
    van Ingen Schenau GJ; Dorssers WM; Welter TG; Beelen A; de Groot G; Jacobs R
    J Physiol; 1995 Apr; 484 ( Pt 1)(Pt 1):247-54. PubMed ID: 7602524
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of crank length on biomechanical parameters and muscle activity during standing cycling.
    Park S; Roh J; Hyeong J; Kim S
    J Sports Sci; 2022 Jan; 40(2):185-194. PubMed ID: 34581253
    [TBL] [Abstract][Full Text] [Related]  

  • 50. On the biomechanics of cycling. A study of joint and muscle load during exercise on the bicycle ergometer.
    Ericson M
    Scand J Rehabil Med Suppl; 1986; 16():1-43. PubMed ID: 3468609
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Adaptation of muscle coordination to altered task mechanics during steady-state cycling.
    Neptune RR; Herzog W
    J Biomech; 2000 Feb; 33(2):165-72. PubMed ID: 10653029
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A comparison of optimisation methods and knee joint degrees of freedom on muscle force predictions during single-leg hop landings.
    Mokhtarzadeh H; Perraton L; Fok L; Muñoz MA; Clark R; Pivonka P; Bryant AL
    J Biomech; 2014 Sep; 47(12):2863-8. PubMed ID: 25129166
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A method for biomechanical analysis of bicycle pedalling.
    Hull ML; Jorge M
    J Biomech; 1985; 18(9):631-44. PubMed ID: 4077861
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biomechanics and muscle coordination of human walking. Part I: introduction to concepts, power transfer, dynamics and simulations.
    Zajac FE; Neptune RR; Kautz SA
    Gait Posture; 2002 Dec; 16(3):215-32. PubMed ID: 12443946
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effect of saddle height and saddle position changes from pedal on muscles and joints behaviors in ergometer: A parametric study.
    Hazrati E; Azghani MR
    Proc Inst Mech Eng H; 2018 Dec; 232(12):1219-1229. PubMed ID: 30479176
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lower extremity muscular flexibility in long distance runners.
    Wang SS; Whitney SL; Burdett RG; Janosky JE
    J Orthop Sports Phys Ther; 1993 Feb; 17(2):102-7. PubMed ID: 8467336
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Timing of muscle activation of the lower limbs can be modulated to maintain a constant pedaling cadence.
    Rouffet DM; Mornieux G; Zameziati K; Belli A; Hautier CA
    J Electromyogr Kinesiol; 2009 Dec; 19(6):1100-7. PubMed ID: 19138863
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modulation of transmission in the corticospinal and group Ia afferent pathways to soleus motoneurons during bicycling.
    Pyndt HS; Nielsen JB
    J Neurophysiol; 2003 Jan; 89(1):304-14. PubMed ID: 12522181
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Muscle force adaptation to changes in upper body position during seated sprint cycling.
    Bini RR; Daly L; Kingsley M
    J Sports Sci; 2019 Oct; 37(19):2270-2278. PubMed ID: 31177946
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transfer of mechanical energy between ankle and knee joints by gastrocnemius and plantaris muscles during cat locomotion.
    Prilutsky BI; Herzog W; Leonard T
    J Biomech; 1996 Apr; 29(4):391-403. PubMed ID: 8964769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.