These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 9165398)

  • 1. A comparison of different methods in predicting static pressure distribution in articulating joints.
    Li G; Sakamoto M; Chao EY
    J Biomech; 1997 Jun; 30(6):635-8. PubMed ID: 9165398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of scratch resistance of cobalt chromium alloy bearing surface, articulating against ultra-high molecular weight polyethylene, due to third-body wear particles.
    Mirghany M; Jin ZM
    Proc Inst Mech Eng H; 2004; 218(1):41-50. PubMed ID: 14982345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrete element analysis in musculoskeletal biomechanics.
    Chao EY; Volokh KY; Yoshida H; Shiba N; Ide T
    Mol Cell Biomech; 2010 Sep; 7(3):175-92. PubMed ID: 21141680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An evaluation of three-dimensional diarthrodial joint contact using penetration data and the finite element method.
    Dunbar WL; Un K; Donzelli PS; Spilker RL
    J Biomech Eng; 2001 Aug; 123(4):333-40. PubMed ID: 11563758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissues.
    Wu JZ; Herzog W; Epstein M
    J Biomech; 1998 Feb; 31(2):165-9. PubMed ID: 9593211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of deformable and elastic foundation finite element simulations for predicting knee replacement mechanics.
    Halloran JP; Easley SK; Petrella AJ; Rullkoetter PJ
    J Biomech Eng; 2005 Oct; 127(5):813-8. PubMed ID: 16248311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force and pressure transmission through the normal wrist. A theoretical two-dimensional study in the posteroanterior plane.
    Schuind F; Cooney WP; Linscheid RL; An KN; Chao EY
    J Biomech; 1995 May; 28(5):587-601. PubMed ID: 7775494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On foundations of discrete element analysis of contact in diarthrodial joints.
    Volokh KY; Chao EY; Armand M
    Mol Cell Biomech; 2007 Jun; 4(2):67-73. PubMed ID: 17937111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of motion segment simulation and joint positioning on spinal loads in trunk musculoskeletal models.
    Ghezelbash F; Eskandari AH; Shirazi-Adl A; Arjmand N; El-Ouaaid Z; Plamondon A
    J Biomech; 2018 Mar; 70():149-156. PubMed ID: 28797595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of grid dimensions on finite element models of an articular surface.
    Galbraith PC; Bryant JT
    J Biomech; 1989; 22(4):385-93. PubMed ID: 2745473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of inserting a pressensor film into articular joints on the actual contact mechanics.
    Wu JZ; Herzog W; Epstein M
    J Biomech Eng; 1998 Oct; 120(5):655-9. PubMed ID: 10412445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An analytical solution for the radial and tangential displacements on a thin hemispherical layer of articular cartilage.
    Félix Quiñonez A; Summers JL; Fisher J; Jin ZM
    Biomech Model Mechanobiol; 2011 Jun; 10(3):283-93. PubMed ID: 20582612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical response of lumbar facet joints under follower preload: a finite element study.
    Du CF; Yang N; Guo JC; Huang YP; Zhang C
    BMC Musculoskelet Disord; 2016 Mar; 17():126. PubMed ID: 26980002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A technique for studying the kinematics of human joints. Part I: Theory.
    Ohwovoriole EN
    Orthopedics; 1987 Mar; 10(3):441-9. PubMed ID: 3554187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress analysis of cushion form bearings for total hip replacements.
    Jin ZM; Dowson D; Fisher J
    Proc Inst Mech Eng H; 1991; 205(4):219-26. PubMed ID: 1670079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Validated Finite Element Analysis of Facet Joint Stress in Degenerative Lumbar Scoliosis.
    Wang L; Zhang B; Chen S; Lu X; Li ZY; Guo Q
    World Neurosurg; 2016 Nov; 95():126-133. PubMed ID: 27521732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational method for determination of bone and joint loads using bone density distributions.
    Fischer KJ; Jacobs CR; Carter DR
    J Biomech; 1995 Sep; 28(9):1127-35. PubMed ID: 7559684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theoretical solution for the frictionless rolling contact of cylindrical biphasic articular cartilage layers.
    Ateshian GA; Wang H
    J Biomech; 1995 Nov; 28(11):1341-55. PubMed ID: 8522547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of geometry on the stress distribution in joints--a finite element analysis.
    Eckstein F; Merz B; Schmid P; Putz R
    Anat Embryol (Berl); 1994 Jun; 189(6):545-52. PubMed ID: 7978358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical distribution of load in the radius and ulna carpal joint.
    Márquez-Florez K; Vergara-Amador E; de Las Casas EB; Garzón-Alvarado DA
    Comput Biol Med; 2015 May; 60():100-6. PubMed ID: 25795995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.