These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 9165398)

  • 41. Pressure distribution on articular surfaces: application to joint stability evaluation.
    An KN; Himeno S; Tsumura H; Kawai T; Chao EY
    J Biomech; 1990; 23(10):1013-20. PubMed ID: 2229084
    [No Abstract]   [Full Text] [Related]  

  • 42. A finite element model of the human knee joint for the study of tibio-femoral contact.
    Donahue TL; Hull ML; Rashid MM; Jacobs CR
    J Biomech Eng; 2002 Jun; 124(3):273-80. PubMed ID: 12071261
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A design concept of parallel elasticity extracted from biological muscles for engineered actuators.
    Chen J; Jin H; Iida F; Zhao J
    Bioinspir Biomim; 2016 Aug; 11(5):056009. PubMed ID: 27550947
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A sound and efficient measure of joint congruence.
    Conconi M; Castelli VP
    Proc Inst Mech Eng H; 2014 Sep; 228(9):935-41. PubMed ID: 25231666
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Contact finite element stress analysis of the hip joint.
    Rapperport DJ; Carter DR; Schurman DJ
    J Orthop Res; 1985; 3(4):435-46. PubMed ID: 4067702
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An axisymmetric boundary integral model for incompressible linear viscoelasticity: application to the micropipette aspiration contact problem.
    Haider MA; Guilak F
    J Biomech Eng; 2000 Jun; 122(3):236-44. PubMed ID: 10923291
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A viscoelastic poromechanical model of the knee joint in large compression.
    Kazemi M; Li LP
    Med Eng Phys; 2014 Aug; 36(8):998-1006. PubMed ID: 24933338
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A modified elastic foundation contact model for application in 3D models of the prosthetic knee.
    Pérez-González A; Fenollosa-Esteve C; Sancho-Bru JL; Sánchez-Marín FT; Vergara M; Rodríguez-Cervantes PJ
    Med Eng Phys; 2008 Apr; 30(3):387-98. PubMed ID: 17513163
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Indentation analysis of biphasic articular cartilage: nonlinear phenomena under finite deformation.
    Suh JK; Spilker RL
    J Biomech Eng; 1994 Feb; 116(1):1-9. PubMed ID: 8189703
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development and initial evaluation of a finite element model of the pediatric craniocervical junction.
    Phuntsok R; Mazur MD; Ellis BJ; Ravindra VM; Brockmeyer DL
    J Neurosurg Pediatr; 2016 Apr; 17(4):497-503. PubMed ID: 26684768
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Contact stress at articular surfaces in total joint replacements. Part II: Analytical and numerical methods.
    Lewis G
    Biomed Mater Eng; 1998; 8(5-6):259-78. PubMed ID: 10081590
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Articular contact in a three-dimensional model of the knee.
    Blankevoort L; Kuiper JH; Huiskes R; Grootenboer HJ
    J Biomech; 1991; 24(11):1019-31. PubMed ID: 1761580
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A computational framework for simultaneous estimation of muscle and joint contact forces and body motion using optimization and surrogate modeling.
    Eskinazi I; Fregly BJ
    Med Eng Phys; 2018 Apr; 54():56-64. PubMed ID: 29487037
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Virtual reality (VR) techniques in orthopaedic research and practice.
    Chao EY; Barrance P; Genda E; Iwasaki N; Kato S; Faust A
    Stud Health Technol Inform; 1997; 39():107-14. PubMed ID: 10168906
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development and evaluation of a finite element model of the THOR for occupant protection of spaceflight crewmembers.
    Putnam JB; Somers JT; Wells JA; Perry CE; Untaroiu CD
    Accid Anal Prev; 2015 Sep; 82():244-56. PubMed ID: 26103438
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Forward dynamics simulation of human figures on assistive devices using geometric skin deformation model.
    Yoshiyasu Y; Ayusawa K; Yoshida E; Matsumoto Y; Endo Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2442-5. PubMed ID: 26736787
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Normal contact of elastic spheres with two elastic layers as a model of joint articulation.
    Eberhardt AW; Lewis JL; Keer LM
    J Biomech Eng; 1991 Nov; 113(4):410-7. PubMed ID: 1762438
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Semianalytical Solution for the Deformation of an Elastic Layer under an Axisymmetrically Distributed Power-Form Load: Application to Fluid-Jet-Induced Indentation of Biological Soft Tissues.
    Lu M; Huang S; Yang X; Yang L; Mao R
    Biomed Res Int; 2017; 2017():9842037. PubMed ID: 28373991
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Study on establishment and mechanics application of finite element model of bovine eye.
    Cui YH; Huang JF; Cheng SY; Wei W; Shang L; Li N; Xiong K
    BMC Ophthalmol; 2015 Aug; 15():101. PubMed ID: 26268321
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Load distribution on the radio-carpal joint for carpal arthrodesis.
    Márquez-Florez K; Vergara-Amador E; Gavilán-Alfonso M; Garzón-Alvarado D
    Comput Methods Programs Biomed; 2016 Apr; 127():204-15. PubMed ID: 26787512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.