These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
372 related articles for article (PubMed ID: 9165740)
41. Acoustic cavitation generated by an extracorporeal shockwave lithotripter. Coleman AJ; Saunders JE; Crum LA; Dyson M Ultrasound Med Biol; 1987 Feb; 13(2):69-76. PubMed ID: 3590362 [TBL] [Abstract][Full Text] [Related]
42. Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. I. Acoustic fields. Bailey MR; Blackstock DT; Cleveland RO; Crum LA J Acoust Soc Am; 1998 Oct; 104(4):2517-24. PubMed ID: 10491712 [TBL] [Abstract][Full Text] [Related]
43. Modified shock waves for extracorporeal shock wave lithotripsy: a simulation based on the Gilmore formulation. Canseco G; de Icaza-Herrera M; Fernández F; Loske AM Ultrasonics; 2011 Oct; 51(7):803-10. PubMed ID: 21459398 [TBL] [Abstract][Full Text] [Related]
44. Spatial-temporal dynamics of cavitation bubble clouds in 1.2 MHz focused ultrasound field. Chen H; Li X; Wan M Ultrason Sonochem; 2006 Sep; 13(6):480-6. PubMed ID: 16571378 [TBL] [Abstract][Full Text] [Related]
45. Experimental and theoretical characterisation of sonochemical cells. Part 2: cell disruptors (Ultrasonic horns) and cavity cluster collapse. Birkin PR; Offin DG; Leighton TG Phys Chem Chem Phys; 2005 Feb; 7(3):530-7. PubMed ID: 19785140 [TBL] [Abstract][Full Text] [Related]
46. High intensity focused ultrasound lithotripsy with cavitating microbubbles. Yoshizawa S; Ikeda T; Ito A; Ota R; Takagi S; Matsumoto Y Med Biol Eng Comput; 2009 Aug; 47(8):851-60. PubMed ID: 19360448 [TBL] [Abstract][Full Text] [Related]
47. The effect of reflector geometry on the acoustic field and bubble dynamics produced by an electrohydraulic shock wave lithotripter. Zhou Y; Zhong P J Acoust Soc Am; 2006 Jun; 119(6):3625-36. PubMed ID: 16838506 [TBL] [Abstract][Full Text] [Related]
48. Observations of the collapses and rebounds of millimeter-sized lithotripsy bubbles. Kreider W; Crum LA; Bailey MR; Sapozhnikov OA J Acoust Soc Am; 2011 Nov; 130(5):3531-40. PubMed ID: 22088027 [TBL] [Abstract][Full Text] [Related]
49. Kidney damage and renal functional changes are minimized by waveform control that suppresses cavitation in shock wave lithotripsy. Evan AP; Willis LR; McAteer JA; Bailey MR; Connors BA; Shao Y; Lingeman JE; Williams JC; Fineberg NS; Crum LA J Urol; 2002 Oct; 168(4 Pt 1):1556-62. PubMed ID: 12352457 [TBL] [Abstract][Full Text] [Related]
51. Reduction of tissue injury in shock-wave lithotripsy by using an acoustic diode. Zhu S; Dreyer T; Liebler M; Riedlinger R; Preminger GM; Zhong P Ultrasound Med Biol; 2004 May; 30(5):675-82. PubMed ID: 15183234 [TBL] [Abstract][Full Text] [Related]
52. Enhanced High-Rate Shockwave Lithotripsy Stone Comminution in an In Vivo Porcine Model Using Acoustic Bubble Coalescence. Alavi Tamaddoni H; Roberts WW; Duryea AP; Cain CA; Hall TL J Endourol; 2016 Dec; 30(12):1321-1325. PubMed ID: 27762629 [TBL] [Abstract][Full Text] [Related]
53. Exploring the Acoustic and Dynamic Characteristics of Phase-Change Droplets. Fan CH; Kao WF; Kang ST; Ho YJ; Yeh CK IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):1051-1061. PubMed ID: 33079650 [TBL] [Abstract][Full Text] [Related]
54. Cell damage by lithotripter shock waves at high pressure to preclude cavitation. Williams JC; Woodward JF; Stonehill MA; Evan AP; McAteer JA Ultrasound Med Biol; 1999 Nov; 25(9):1445-9. PubMed ID: 10626633 [TBL] [Abstract][Full Text] [Related]
55. Shifting the Split Reflectors to Enhance Stone Fragmentation of Shock Wave Lithotripsy. Wang JC; Zhou Y Ultrasound Med Biol; 2016 Aug; 42(8):1876-89. PubMed ID: 27166016 [TBL] [Abstract][Full Text] [Related]
56. The effect of treatment strategy on stone comminution efficiency in shock wave lithotripsy. Zhou Y; Cocks FH; Preminger GM; Zhong P J Urol; 2004 Jul; 172(1):349-54. PubMed ID: 15201809 [TBL] [Abstract][Full Text] [Related]
57. Cavitation detection during shock-wave lithotripsy. Bailey MR; Pishchalnikov YA; Sapozhnikov OA; Cleveland RO; McAteer JA; Miller NA; Pishchalnikova IV; Connors BA; Crum LA; Evan AP Ultrasound Med Biol; 2005 Sep; 31(9):1245-56. PubMed ID: 16176791 [TBL] [Abstract][Full Text] [Related]
58. Control of cavitation activity by different shockwave pulsing regimes. Huber P; Debus J; Jöchle K; Simiantonakis I; Jenne J; Rastert R; Spoo J; Lorenz WJ; Wannenmacher M Phys Med Biol; 1999 Jun; 44(6):1427-37. PubMed ID: 10498515 [TBL] [Abstract][Full Text] [Related]
59. Single-shot measurements of the acoustic field of an electrohydraulic lithotripter using a hydrophone array. Alibakhshi MA; Kracht JM; Cleveland RO; Filoux E; Ketterling JA J Acoust Soc Am; 2013 May; 133(5):3176-85. PubMed ID: 23654419 [TBL] [Abstract][Full Text] [Related]