These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 9165740)

  • 61. Lithotripter shock wave interaction with a bubble near various biomaterials.
    Ohl SW; Klaseboer E; Szeri AJ; Khoo BC
    Phys Med Biol; 2016 Oct; 61(19):7031-7053. PubMed ID: 27649337
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The acoustic fields of the Wolf electrohydraulic lithotripter.
    Campbell DS; Flynn HG; Blackstock DT; Linke C; Carstensen EL
    J Lithotr Stone Dis; 1991 Apr; 3(2):147-56. PubMed ID: 10149155
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A comparison of light spot hydrophone and fiber optic probe hydrophone for lithotripter field characterization.
    Smith N; Sankin GN; Simmons WN; Nanke R; Fehre J; Zhong P
    Rev Sci Instrum; 2012 Jan; 83(1):014301. PubMed ID: 22299970
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Influence of shock wave pressure amplitude and pulse repetition frequency on the lifespan, size and number of transient cavities in the field of an electromagnetic lithotripter.
    Huber P; Jöchle K; Debus J
    Phys Med Biol; 1998 Oct; 43(10):3113-28. PubMed ID: 9814538
    [TBL] [Abstract][Full Text] [Related]  

  • 65. In vivo detection of ultrasonically induced cavitation by a fibre-optic technique.
    Huber P; Debus J; Peschke P; Hahn EW; Lorenz WJ
    Ultrasound Med Biol; 1994; 20(8):811-25. PubMed ID: 7863570
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Shock wave interaction with laser-generated single bubbles.
    Sankin GN; Simmons WN; Zhu SL; Zhong P
    Phys Rev Lett; 2005 Jul; 95(3):034501. PubMed ID: 16090745
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Characterization of cavitational activity in lithotripsy fields using a robust electromagnetic probe.
    Pye SD; Dineley JA
    Ultrasound Med Biol; 1999 Mar; 25(3):451-71. PubMed ID: 10374988
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Macroscopic ESWL-induced cavitation: in vitro studies.
    Pittomvils G; Lafaut JP; Vandeursen H; De Ridder D; Baert L; Boving R
    Ultrasound Med Biol; 1995; 21(3):393-8. PubMed ID: 7645130
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Extracorporeal shock waves stimulate frog sciatic nerves indirectly via a cavitation-mediated mechanism.
    Schelling G; Delius M; Gschwender M; Grafe P; Gambihler S
    Biophys J; 1994 Jan; 66(1):133-40. PubMed ID: 8130332
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Geometrical characterization of the cavitation bubble clouds produced by a clinical shock wave device.
    Choi MJ; Kang G; Huh JS
    Biomed Eng Lett; 2017 May; 7(2):143-151. PubMed ID: 30603161
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Why stones break better at slow shockwave rates than at fast rates: in vitro study with a research electrohydraulic lithotripter.
    Pishchalnikov YA; McAteer JA; Williams JC; Pishchalnikova IV; Vonderhaar RJ
    J Endourol; 2006 Aug; 20(8):537-41. PubMed ID: 16903810
    [TBL] [Abstract][Full Text] [Related]  

  • 72. GPU-accelerated study of the inertial cavitation threshold in viscoelastic soft tissue using a dual-frequency driving signal.
    Filonets T; Solovchuk M
    Ultrason Sonochem; 2022 Aug; 88():106056. PubMed ID: 35728380
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Turbulent water coupling in shock wave lithotripsy.
    Lautz J; Sankin G; Zhong P
    Phys Med Biol; 2013 Feb; 58(3):735-48. PubMed ID: 23322027
    [TBL] [Abstract][Full Text] [Related]  

  • 74. [Quantitative evaluation of cavitation bubble fields induced by lithotripter shock waves].
    Luderer T; Bohris C; Bellemann ME
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 2():790-3. PubMed ID: 12465304
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Acoustic bubble removal to enhance SWL efficacy at high shock rate: an in vitro study.
    Duryea AP; Roberts WW; Cain CA; Tamaddoni HA; Hall TL
    J Endourol; 2014 Jan; 28(1):90-5. PubMed ID: 23957846
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Cavitation microjets as a contributory mechanism for renal calculi disintegration in ESWL.
    Crum LA
    J Urol; 1988 Dec; 140(6):1587-90. PubMed ID: 3057239
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Jet and Shock Wave from Collapse of Two Cavitation Bubbles.
    Luo J; Niu Z
    Sci Rep; 2019 Feb; 9(1):1352. PubMed ID: 30718594
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Performance characterisation of a passive cavitation detector optimised for subharmonic periodic shock waves from acoustic cavitation in MHz and sub-MHz ultrasound.
    Johansen K; Song JH; Prentice P
    Ultrason Sonochem; 2018 May; 43():146-155. PubMed ID: 29555269
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Modeling and experimental analysis of acoustic cavitation bubbles for Burst Wave Lithotripsy.
    Maeda K; Colonius T; Kreider W; Maxwell A; Cunitz B; Bailey M
    J Phys Conf Ser; 2015 Dec; 656():. PubMed ID: 27087826
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Modeling of an electrohydraulic lithotripter with the KZK equation.
    Averkiou MA; Cleveland RO
    J Acoust Soc Am; 1999 Jul; 106(1):102-12. PubMed ID: 10420620
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.