BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 9166509)

  • 1. P53-independent apoptosis: a mechanism of radiation-induced cell death of glioblastoma cells.
    Haas-Kogan DA; Dazin P; Hu L; Deen DF; Israel A
    Cancer J Sci Am; 1996; 2(2):114-21. PubMed ID: 9166509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell cycle synchrony unmasks the influence of p53 function on radiosensitivity of human glioblastoma cells.
    Yount GL; Haas-Kogan DA; Vidair CA; Haas M; Dewey WC; Israel MA
    Cancer Res; 1996 Feb; 56(3):500-6. PubMed ID: 8564961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. p53-dependent G1 arrest and p53-independent apoptosis influence the radiobiologic response of glioblastoma.
    Haas-Kogan DA; Yount G; Haas M; Levi D; Kogan SS; Hu L; Vidair C; Deen DF; Dewey WC; Israel MA
    Int J Radiat Oncol Biol Phys; 1996 Aug; 36(1):95-103. PubMed ID: 8823264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytogenetic damage and the radiation-induced G1-phase checkpoint.
    Gupta N; Vij R; Haas-Kogan DA; Israel MA; Deen DF; Morgan WF
    Radiat Res; 1996 Mar; 145(3):289-98. PubMed ID: 8927696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of radiation-induced G2 delay potentiates cell death by apoptosis and/or the induction of giant cells in colorectal tumor cells with disrupted p53 function.
    Bracey TS; Williams AC; Paraskeva C
    Clin Cancer Res; 1997 Aug; 3(8):1371-81. PubMed ID: 9815821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional activation of TRADD mediates p53-independent radiation-induced apoptosis of glioma cells.
    Yount GL; Afshar G; Ries S; Korn M; Shalev N; Basila D; McCormick F; Haas-Kogan DA
    Oncogene; 2001 May; 20(22):2826-35. PubMed ID: 11420694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of p53 in G2/M cell cycle arrest and apoptosis in response to gamma-irradiation in ovarian carcinoma cell lines.
    Concin N; Stimpfl M; Zeillinger C; Wolff U; Hefler L; Sedlak J; Leodolter S; Zeillinger R
    Int J Oncol; 2003 Jan; 22(1):51-7. PubMed ID: 12469184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissociation between cell cycle arrest and apoptosis can occur in Li-Fraumeni cells heterozygous for p53 gene mutations.
    Delia D; Goi K; Mizutani S; Yamada T; Aiello A; Fontanella E; Lamorte G; Iwata S; Ishioka C; Krajewski S; Reed JC; Pierotti MA
    Oncogene; 1997 May; 14(18):2137-47. PubMed ID: 9174049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of p53 overexpression on radiation sensitivity of human colon cancer cells.
    Zellars RC; Naida JD; Davis MA; Lawrence TS
    Radiat Oncol Investig; 1997; 5(2):43-9. PubMed ID: 9303056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. p53-dependent apoptosis or growth arrest induced by different forms of radiation in U2OS cells: p21WAF1/CIP1 repression in UV induced apoptosis.
    Allan LA; Fried M
    Oncogene; 1999 Sep; 18(39):5403-12. PubMed ID: 10498894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genotype-dependent radiosensitivity: clonogenic survival, apoptosis and cell-cycle redistribution.
    Williams JR; Zhang Y; Zhou H; Russell J; Gridley DS; Koch CJ; Little JB
    Int J Radiat Biol; 2008 Feb; 84(2):151-64. PubMed ID: 18246483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Explaining differences in sensitivity to killing by ionizing radiation between human lymphoid cell lines.
    Aldridge DR; Radford IR
    Cancer Res; 1998 Jul; 58(13):2817-24. PubMed ID: 9661896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiation-induced apoptosis of human prostate cancer cells is independent of mutant p53 overexpression.
    Kyprianou N; Rock S
    Anticancer Res; 1998; 18(2A):897-905. PubMed ID: 9615738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Functional restoration of tumor suppressor p53 alters susceptibility of glioblastoma cells to irradiation--analysis using a cell line containing a temperature-sensitive mutant].
    Tsuchiya K
    Hokkaido Igaku Zasshi; 2000 Jul; 75(4):265-74. PubMed ID: 10976406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional p53 increases prostate cancer cell survival after exposure to fractionated doses of ionizing radiation.
    Scott SL; Earle JD; Gumerlock PH
    Cancer Res; 2003 Nov; 63(21):7190-6. PubMed ID: 14612513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radioresistant MTp53-expressing rat embryo cell transformants exhibit increased DNA-dsb rejoining during exposure to ionizing radiation.
    Bristow RG; Hu Q; Jang A; Chung S; Peacock J; Benchimol S; Hill R
    Oncogene; 1998 Apr; 16(14):1789-802. PubMed ID: 9583677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of As2O3 on cell cycle progression and cyclins D1 and B1 expression in two glioblastoma cell lines differing in p53 status.
    Zhao S; Tsuchida T; Kawakami K; Shi C; Kawamoto K
    Int J Oncol; 2002 Jul; 21(1):49-55. PubMed ID: 12063549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of serum starvation on radiosensitivity, proliferation and apoptosis in four human tumor cell lines with different p53 status.
    Oya N; Zölzer F; Werner F; Streffer C
    Strahlenther Onkol; 2003 Feb; 179(2):99-106. PubMed ID: 12590320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between radiation-induced G1 phase arrest and p53 function in human tumor cells.
    Nagasawa H; Li CY; Maki CG; Imrich AC; Little JB
    Cancer Res; 1995 May; 55(9):1842-6. PubMed ID: 7728750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the p53 tumor suppressor gene in cell cycle arrest and radiosensitivity of Burkitt's lymphoma cell lines.
    O'Connor PM; Jackman J; Jondle D; Bhatia K; Magrath I; Kohn KW
    Cancer Res; 1993 Oct; 53(20):4776-80. PubMed ID: 8402660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.