These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 9166771)
1. Crystal structure at 2.0 A resolution of phosphoribosyl anthranilate isomerase from the hyperthermophile Thermotoga maritima: possible determinants of protein stability. Hennig M; Sterner R; Kirschner K; Jansonius JN Biochemistry; 1997 May; 36(20):6009-16. PubMed ID: 9166771 [TBL] [Abstract][Full Text] [Related]
2. Phosphoribosyl anthranilate isomerase from Thermotoga maritima is an extremely stable and active homodimer. Sterner R; Kleemann GR; Szadkowski H; Lustig A; Hennig M; Kirschner K Protein Sci; 1996 Oct; 5(10):2000-8. PubMed ID: 8897600 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of glutamate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima at 3.0 A resolution. Knapp S; de Vos WM; Rice D; Ladenstein R J Mol Biol; 1997 Apr; 267(4):916-32. PubMed ID: 9135121 [TBL] [Abstract][Full Text] [Related]
4. High-resolution X-ray structure of the DNA-binding protein HU from the hyper-thermophilic Thermotoga maritima and the determinants of its thermostability. Christodoulou E; Rypniewski WR; Vorgias CR Extremophiles; 2003 Apr; 7(2):111-22. PubMed ID: 12664263 [TBL] [Abstract][Full Text] [Related]
5. Stabilization due to dimer formation of phosphoribosyl anthranilate isomerase from Thermus thermophilus HB8: X-ray Analysis and DSC experiments. Taka J; Ogasahara K; Jeyakanthan J; Kunishima N; Kuroishi C; Sugahara M; Yokoyama S; Yutani K J Biochem; 2005 May; 137(5):569-78. PubMed ID: 15944409 [TBL] [Abstract][Full Text] [Related]
6. Tiny TIM: a small, tetrameric, hyperthermostable triosephosphate isomerase. Walden H; Bell GS; Russell RJ; Siebers B; Hensel R; Taylor GL J Mol Biol; 2001 Mar; 306(4):745-57. PubMed ID: 11243785 [TBL] [Abstract][Full Text] [Related]
7. The crystal structure of dihydrofolate reductase from Thermotoga maritima: molecular features of thermostability. Dams T; Auerbach G; Bader G; Jacob U; Ploom T; Huber R; Jaenicke R J Mol Biol; 2000 Mar; 297(3):659-72. PubMed ID: 10731419 [TBL] [Abstract][Full Text] [Related]
8. Crystal structures of thermostable xylose isomerases from Thermus caldophilus and Thermus thermophilus: possible structural determinants of thermostability. Chang C; Park BC; Lee DS; Suh SW J Mol Biol; 1999 May; 288(4):623-34. PubMed ID: 10329168 [TBL] [Abstract][Full Text] [Related]
9. Crystal structures of Escherichia coli and Salmonella typhimurium 3-isopropylmalate dehydrogenase and comparison with their thermophilic counterpart from Thermus thermophilus. Wallon G; Kryger G; Lovett ST; Oshima T; Ringe D; Petsko GA J Mol Biol; 1997 Mar; 266(5):1016-31. PubMed ID: 9086278 [TBL] [Abstract][Full Text] [Related]
10. Structure and function of mutationally generated monomers of dimeric phosphoribosylanthranilate isomerase from Thermotoga maritima. Thoma R; Hennig M; Sterner R; Kirschner K Structure; 2000 Mar; 8(3):265-76. PubMed ID: 10745009 [TBL] [Abstract][Full Text] [Related]
11. The structure of rhamnose isomerase from Escherichia coli and its relation with xylose isomerase illustrates a change between inter and intra-subunit complementation during evolution. Korndörfer IP; Fessner WD; Matthews BW J Mol Biol; 2000 Jul; 300(4):917-33. PubMed ID: 10891278 [TBL] [Abstract][Full Text] [Related]
12. The refined crystal structure of Bacillus cereus oligo-1,6-glucosidase at 2.0 A resolution: structural characterization of proline-substitution sites for protein thermostabilization. Watanabe K; Hata Y; Kizaki H; Katsube Y; Suzuki Y J Mol Biol; 1997 May; 269(1):142-53. PubMed ID: 9193006 [TBL] [Abstract][Full Text] [Related]
13. Three-dimensional structure of the bifunctional enzyme phosphoribosylanthranilate isomerase: indoleglycerolphosphate synthase from Escherichia coli refined at 2.0 A resolution. Wilmanns M; Priestle JP; Niermann T; Jansonius JN J Mol Biol; 1992 Jan; 223(2):477-507. PubMed ID: 1738159 [TBL] [Abstract][Full Text] [Related]
14. Structural features correlated with the extreme thermostability of 1[4Fe-4S] ferredoxin from the hyperthermophilic bacterium Thermotoga maritima. Macedo-Ribeiro S; Darimont B; Sterner R Biol Chem; 1997; 378(3-4):331-6. PubMed ID: 9165090 [TBL] [Abstract][Full Text] [Related]
15. Hyperthermostable protein structure maintained by intra and inter-helix ion-pairs in archaeal O6-methylguanine-DNA methyltransferase. Hashimoto H; Inoue T; Nishioka M; Fujiwara S; Takagi M; Imanaka T; Kai Y J Mol Biol; 1999 Sep; 292(3):707-16. PubMed ID: 10497033 [TBL] [Abstract][Full Text] [Related]
16. Crystal structure of a hyperthermophilic archaeal acylphosphatase from Pyrococcus horikoshii--structural insights into enzymatic catalysis, thermostability, and dimerization. Cheung YY; Lam SY; Chu WK; Allen MD; Bycroft M; Wong KB Biochemistry; 2005 Mar; 44(12):4601-11. PubMed ID: 15779887 [TBL] [Abstract][Full Text] [Related]
17. The crystal structure of triosephosphate isomerase (TIM) from Thermotoga maritima: a comparative thermostability structural analysis of ten different TIM structures. Maes D; Zeelen JP; Thanki N; Beaucamp N; Alvarez M; Thi MH; Backmann J; Martial JA; Wyns L; Jaenicke R; Wierenga RK Proteins; 1999 Nov; 37(3):441-53. PubMed ID: 10591103 [TBL] [Abstract][Full Text] [Related]
18. The crystal structure of d-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeon Methanothermus fervidus in the presence of NADP(+) at 2.1 A resolution. Charron C; Talfournier F; Isupov MN; Littlechild JA; Branlant G; Vitoux B; Aubry A J Mol Biol; 2000 Mar; 297(2):481-500. PubMed ID: 10715215 [TBL] [Abstract][Full Text] [Related]
19. (Beta alpha)8-barrel proteins of tryptophan biosynthesis in the hyperthermophile Thermotoga maritima. Sterner R; Dahm A; Darimont B; Ivens A; Liebl W; Kirschner K EMBO J; 1995 Sep; 14(18):4395-402. PubMed ID: 7556082 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure of decameric fructose-6-phosphate aldolase from Escherichia coli reveals inter-subunit helix swapping as a structural basis for assembly differences in the transaldolase family. Thorell S; Schürmann M; Sprenger GA; Schneider G J Mol Biol; 2002 May; 319(1):161-71. PubMed ID: 12051943 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]