BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

507 related articles for article (PubMed ID: 9166922)

  • 1. Input-output properties and gain changes in the human corticospinal pathway.
    Devanne H; Lavoie BA; Capaday C
    Exp Brain Res; 1997 Apr; 114(2):329-38. PubMed ID: 9166922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The contribution of fast corticospinal input to the voluntary activation of proximal muscles in normal subjects and in stroke patients.
    Turton A; Lemon RN
    Exp Brain Res; 1999 Dec; 129(4):559-72. PubMed ID: 10638430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of gonadal steroids on the input-output relationship of the corticospinal pathway in humans.
    Bonifazi M; Ginanneschi F; della Volpe R; Rossi A
    Brain Res; 2004 Jun; 1011(2):187-94. PubMed ID: 15157805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of corticospinal excitability during lengthening and shortening contractions in the first dorsal interosseus muscle of humans.
    Sekiguchi H; Kohno Y; Hirano T; Akai M; Nakajima Y; Nakazawa K
    Exp Brain Res; 2007 Apr; 178(3):374-84. PubMed ID: 17061090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of input-output patterns in the corticospinal system of normal subjects and incomplete spinal cord injured patients.
    Davey NJ; Smith HC; Savic G; Maskill DW; Ellaway PH; Frankel HL
    Exp Brain Res; 1999 Aug; 127(4):382-90. PubMed ID: 10480273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced excitability of the corticospinal pathway of the ankle extensor and flexor muscles during standing in humans.
    Obata H; Sekiguchi H; Nakazawa K; Ohtsuki T
    Exp Brain Res; 2009 Aug; 197(3):207-13. PubMed ID: 19603153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lower excitability of the corticospinal tract to transcranial magnetic stimulation during lengthening contractions in human elbow flexors.
    Sekiguchi H; Kimura T; Yamanaka K; Nakazawa K
    Neurosci Lett; 2001 Oct; 312(2):83-6. PubMed ID: 11595340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Task-dependent changes of motor cortical network excitability during precision grip compared to isolated finger contraction.
    Kouchtir-Devanne N; Capaday C; Cassim F; Derambure P; Devanne H
    J Neurophysiol; 2012 Mar; 107(5):1522-9. PubMed ID: 22157124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in corticomotor excitability of hand muscles in relation to static shoulder positions.
    Ginanneschi F; Del Santo F; Dominici F; Gelli F; Mazzocchio R; Rossi A
    Exp Brain Res; 2005 Mar; 161(3):374-82. PubMed ID: 15517216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the corticospinal control of human walking. I. Responses to focal transcranial magnetic stimulation of the motor cortex.
    Capaday C; Lavoie BA; Barbeau H; Schneider C; Bonnard M
    J Neurophysiol; 1999 Jan; 81(1):129-39. PubMed ID: 9914274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corticospinal excitability of the biceps brachii is higher during arm cycling than an intensity-matched tonic contraction.
    Forman D; Raj A; Button DC; Power KE
    J Neurophysiol; 2014 Sep; 112(5):1142-51. PubMed ID: 24899677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cortico-motoneuronal output to intrinsic hand muscles is differentially influenced by static changes in shoulder positions.
    Dominici F; Popa T; Ginanneschi F; Mazzocchio R; Rossi A
    Exp Brain Res; 2005 Aug; 164(4):500-4. PubMed ID: 15883808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corticospinal input in human gait: modulation of magnetically evoked motor responses.
    Schubert M; Curt A; Jensen L; Dietz V
    Exp Brain Res; 1997 Jun; 115(2):234-46. PubMed ID: 9224852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First Prize: Central motor excitability changes after spinal manipulation: a transcranial magnetic stimulation study.
    Dishman JD; Ball KA; Burke J
    J Manipulative Physiol Ther; 2002 Jan; 25(1):1-9. PubMed ID: 11898013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in recruitment properties of the corticospinal pathway between lengthening and shortening contractions in human soleus muscle.
    Sekiguchi H; Nakazawa K; Suzuki S
    Brain Res; 2003 Jul; 977(2):169-79. PubMed ID: 12834877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of voluntary motor activity revealed using transcranial magnetic stimulation of the motor cortex in man.
    Davey NJ; Romaiguère P; Maskill DW; Ellaway PH
    J Physiol; 1994 Jun; 477(Pt 2):223-35. PubMed ID: 7932215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of a motor evoked response to transcranial magnetic stimulation by the activity level of the first dorsal interosseous muscle in humans when grasping a stationary object with different grip widths.
    Hasegaw Y; Kasai T; Kinoshita H; Yahagi S
    Neurosci Lett; 2001 Feb; 299(1-2):1-4. PubMed ID: 11166923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of corticospinal influence over hand muscles during gripping tasks in man and monkey.
    Lemon RN; Johansson RS; Westling G
    Can J Physiol Pharmacol; 1996 Apr; 74(4):547-58. PubMed ID: 8828899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stumbling reactions in man: influence of corticospinal input.
    Keck ME; Pijnappels M; Schubert M; Colombo G; Curt A; Dietz V
    Electroencephalogr Clin Neurophysiol; 1998 Jun; 109(3):215-23. PubMed ID: 9741787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the variability of motor-evoked potentials: experimental results and mathematical model.
    Capaday C
    Exp Brain Res; 2021 Oct; 239(10):2979-2995. PubMed ID: 34324018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.