BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 9166928)

  • 1. Is the erect posture in microgravity based on the control of trunk orientation or center of mass position?
    Massion J; Popov K; Fabre JC; Rage P; Gurfinkel V
    Exp Brain Res; 1997 Apr; 114(2):384-9. PubMed ID: 9166928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Body orientation and center of mass control in microgravity.
    Massion J; Popov K; Fabre JC; Rage P; Gurfinkel V
    Acta Astronaut; 1995; 36(8-12):763-9. PubMed ID: 11541013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinematic synergy adaptation to microgravity during forward trunk movement.
    Vernazza-Martin S; Martin N; Massion J
    J Neurophysiol; 2000 Jan; 83(1):453-64. PubMed ID: 10634887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term adaptation of postural control in microgravity.
    Baroni G; Ferrigno G; Rabuffetti M; Pedotti A; Massion J
    Exp Brain Res; 1999 Oct; 128(3):410-6. PubMed ID: 10501814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Static and dynamic postural control in long-term microgravity: evidence of a dual adaptation.
    Baroni G; Pedrocchi A; Ferrigno G; Massion J; Pedotti A
    J Appl Physiol (1985); 2001 Jan; 90(1):205-15. PubMed ID: 11133912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation of center of mass control under microgravity in a whole-body lifting task.
    Kingma I; Toussaint HM; Commissaris DA; Savelsbergh GJ
    Exp Brain Res; 1999 Mar; 125(1):35-42. PubMed ID: 10100974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor coordination in weightless conditions revealed by long-term microgravity adaptation.
    Baroni G; Pedrocchi A; Ferrigno G; Massion J; Pedotti A
    Acta Astronaut; 2001; 49(3-10):199-213. PubMed ID: 11669110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Egocentric references and human spatial orientation in microgravity. II. Body-centred coordinates in the task of drawing ellipses with prescribed orientation.
    Gurfinkel VS; Lestienne F; Levik YuS ; Popov KE; Lefort L
    Exp Brain Res; 1993; 95(2):343-8. PubMed ID: 8224059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is perception of upper body orientation based on the inertia tensor? Normogravity versus microgravity conditions.
    Gueguen N; Coyle T; Craig C; Bootsma R; Mouchnino L
    Exp Brain Res; 2004 Jun; 156(4):471-7. PubMed ID: 14968277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Body orientation and regulation of the center of gravity during movement under water.
    Massion J; Fabre JC; Mouchnino L; Obadia A
    J Vestib Res; 1995; 5(3):211-21. PubMed ID: 7627380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse dynamic investigation of voluntary leg lateral movements in weightlessness: a new microgravity-specific strategy.
    Pedrocchi A; Baroni G; Pedotti A; Massion J; Ferrigno G
    J Biomech; 2005 Apr; 38(4):769-77. PubMed ID: 15713298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The three-dimensional vestibulo-ocular reflex during prolonged microgravity.
    Clarke AH; Grigull J; Mueller R; Scherer H
    Exp Brain Res; 2000 Oct; 134(3):322-34. PubMed ID: 11045357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethological experiments on human orientation behavior within a three-dimensional space--in microgravity.
    Tafforin C; Campan R
    Adv Space Res; 1994; 14(8):415-8. PubMed ID: 11537950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of microgravity on spatial orientation and posture regulation during Coriolis stimulation.
    Takahashi M; Sekine M; Ikeda T; Watanuki K; Hakuta S; Takeoka H
    Acta Otolaryngol; 2004 May; 124(4):495-501. PubMed ID: 15224882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Axial synergies under microgravity conditions.
    Massion J; Gurfinkel V; Lipshits M; Obadia A; Popov K
    J Vestib Res; 1993; 3(3):275-87. PubMed ID: 8275262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perceived head-trunk angle during microgravity produced by parabolic flight.
    Ceyte H; Trousselard M; Barraud PA; Roux A; Cian C
    Aviat Space Environ Med; 2008 Apr; 79(4):420-3. PubMed ID: 18457300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voluntary head stabilisation in space during oscillatory trunk movements in the frontal plane performed before, during and after a prolonged period of weightlessness.
    Amblard B; Assaiante C; Vaugoyeau M; Baroni G; Ferrigno G; Pedotti A
    Exp Brain Res; 2001 Mar; 137(2):170-9. PubMed ID: 11315545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of head-to-trunk position on the direction of arm movements before, during, and after space flight.
    Berger M; Lechner-Steinleitner S; Kozlovskaya I; Holzmüller G; Mescheriakov S; Sokolov A; Gerstenbrand F
    J Vestib Res; 1998; 8(5):341-54. PubMed ID: 9770653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematic synergies and equilibrium control during trunk movement under loaded and unloaded conditions.
    Vernazza-Martin S; Martin N; Massion J
    Exp Brain Res; 1999 Oct; 128(4):517-26. PubMed ID: 10541745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perception of tilt (somatogravic illusion) in response to sustained linear acceleration during space flight.
    Clément G; Moore ST; Raphan T; Cohen B
    Exp Brain Res; 2001 Jun; 138(4):410-8. PubMed ID: 11465738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.