BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 9167622)

  • 1. Calcium-mobilizing purine receptors on the surface of mammalian articular chondrocytes.
    Koolpe M; Benton HP
    J Orthop Res; 1997 Mar; 15(2):204-12. PubMed ID: 9167622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adenosine 5'-triphosphate, uridine 5'-triphosphate, bradykinin, and lysophosphatidic acid induce different patterns of calcium responses by human articular chondrocytes.
    Koolpe M; Rodrigo JJ; Benton HP
    J Orthop Res; 1998 Mar; 16(2):217-26. PubMed ID: 9621896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of both P1 and P2 purine receptor genes by human articular chondrocytes and profile of ligand-mediated prostaglandin E2 release.
    Koolpe M; Pearson D; Benton HP
    Arthritis Rheum; 1999 Feb; 42(2):258-67. PubMed ID: 10025919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous oscillation and mechanically induced calcium waves in chondrocytes.
    Kono T; Nishikori T; Kataoka H; Uchio Y; Ochi M; Enomoto K
    Cell Biochem Funct; 2006; 24(2):103-11. PubMed ID: 16342135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP and UTP activate calcium-mobilizing P2U-like receptors and act synergistically with interleukin-1 to stimulate prostaglandin E2 release from human rheumatoid synovial cells.
    Loredo GA; Benton HP
    Arthritis Rheum; 1998 Feb; 41(2):246-55. PubMed ID: 9485082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of shear stress on articular chondrocyte metabolism.
    Lane Smith R; Trindade MC; Ikenoue T; Mohtai M; Das P; Carter DR; Goodman SB; Schurman DJ
    Biorheology; 2000; 37(1-2):95-107. PubMed ID: 10912182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms contributing to fluid-flow-induced Ca2+ mobilization in articular chondrocytes.
    Yellowley CE; Jacobs CR; Donahue HJ
    J Cell Physiol; 1999 Sep; 180(3):402-8. PubMed ID: 10430180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of carprofen on sulfated glycosaminoglycan metabolism, protein synthesis, and prostaglandin release by cultured osteoarthritic canine chondrocytes.
    Benton HP; Vasseur PB; Broderick-Villa GA; Koolpe M
    Am J Vet Res; 1997 Mar; 58(3):286-92. PubMed ID: 9055976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. P2Y receptor-mediated stimulation of Müller glial DNA synthesis.
    Moll V; Weick M; Milenkovic I; Kodal H; Reichenbach A; Bringmann A
    Invest Ophthalmol Vis Sci; 2002 Mar; 43(3):766-73. PubMed ID: 11867596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of R and S enantiomers and a racemic mixture of carprofen on the production and release of proteoglycan and prostaglandin E2 from equine chondrocytes and cartilage explants.
    Armstrong S; Lees P
    Am J Vet Res; 1999 Jan; 60(1):98-104. PubMed ID: 9918155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intercellular Ca2+ waves in mechanically stimulated articular chondrocytes.
    D'Andrea P; Calabrese A; Capozzi I; Grandolfo M; Tonon R; Vittur F
    Biorheology; 2000; 37(1-2):75-83. PubMed ID: 10912180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca2+-sensitive phosphoinositide hydrolysis is activated in synovial cells but not in articular chondrocytes.
    Capozzi I; Tonon R; D'andrea P
    Biochem J; 1999 Dec; 344 Pt 2(Pt 2):545-53. PubMed ID: 10567239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of ATP, increase of intracellular calcium and the early expression of c-fos in the repair of rat fetal articular cartilage.
    Kumahashi N; Ochi M; Kataoka H; Uchio Y; Kakimaru H; Sugawara K; Enomoto K
    Cell Tissue Res; 2004 Aug; 317(2):117-28. PubMed ID: 15205939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of adverse conditions to stimulate a cellular stress response by equine articular chondrocytes.
    Benton HP; Cheng TC; MacDonald MH
    Am J Vet Res; 1996 Jun; 57(6):860-5. PubMed ID: 8725814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of matrix synthesis rates by the ionic and osmotic environment of articular chondrocytes.
    Urban JP; Hall AC; Gehl KA
    J Cell Physiol; 1993 Feb; 154(2):262-70. PubMed ID: 8425907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of fibronectin on articular cartilage chondrocyte proteoglycan synthesis and response to insulin-like growth factor-I.
    Martin JA; Buckwalter JA
    J Orthop Res; 1998 Nov; 16(6):752-7. PubMed ID: 9877401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms involved in the increase in intracellular calcium following hypotonic shock in bovine articular chondrocytes.
    Sánchez JC; Danks TA; Wilkins RJ
    Gen Physiol Biophys; 2003 Dec; 22(4):487-500. PubMed ID: 15113121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective stimulation of catecholamine release from bovine adrenal chromaffin cells by an ionotropic purinergic receptor sensitive to 2-methylthio ATP.
    Tomé AR; Castro E; Santos RM; Rosário LM
    BMC Neurosci; 2007 Jun; 8():41. PubMed ID: 17584495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct P2Y receptor subtypes regulate calcium signaling in human retinal pigment epithelial cells.
    Tovell VE; Sanderson J
    Invest Ophthalmol Vis Sci; 2008 Jan; 49(1):350-7. PubMed ID: 18172112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca2+ oscillations and intercellular Ca2+ waves in ATP-stimulated articular chondrocytes.
    D'Andrea P; Vittur F
    J Bone Miner Res; 1996 Jul; 11(7):946-54. PubMed ID: 8797115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.