These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 9167857)

  • 1. Temporal filtering properties of ampullary electrosensory neurons in the torus semicircularis of Eigenmannia: evolutionary and computational implications.
    Fortune ES; Rose GJ
    Brain Behav Evol; 1997; 49(6):312-23. PubMed ID: 9167857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential distribution of ampullary and tuberous processing in the torus semicircularis of Eigenmannia.
    Rose GJ; Call SJ
    J Comp Physiol A; 1992 Feb; 170(2):253-61. PubMed ID: 1583609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of global electrosensory signals on motion processing in the midbrain of Eigenmannia.
    Ramcharitar JU; Tan EW; Fortune ES
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Sep; 191(9):865-72. PubMed ID: 16001182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal filtering properties of midbrain neurons in an electric fish: implications for the function of dendritic spines.
    Rose GJ; Call SJ
    J Neurosci; 1993 Mar; 13(3):1178-89. PubMed ID: 8441006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passive and active membrane properties contribute to the temporal filtering properties of midbrain neurons in vivo.
    Fortune ES; Rose GJ
    J Neurosci; 1997 May; 17(10):3815-25. PubMed ID: 9133400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voltage-gated Na+ channels enhance the temporal filtering properties of electrosensory neurons in the torus.
    Fortune ES; Rose GJ
    J Neurophysiol; 2003 Aug; 90(2):924-9. PubMed ID: 12750421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency-dependent PSP depression contributes to low-pass temporal filtering in Eigenmannia.
    Rose GJ; Fortune ES
    J Neurosci; 1999 Sep; 19(17):7629-39. PubMed ID: 10460268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for the role of dendritic spines in the temporal filtering properties of neurons: the decoding problem and beyond.
    Rose GJ; Call SJ
    Proc Natl Acad Sci U S A; 1992 Oct; 89(20):9662-5. PubMed ID: 1329104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Logarithmic time course of sensory adaptation in electrosensory afferent nerve fibers in a weakly electric fish.
    Xu Z; Payne JR; Nelson ME
    J Neurophysiol; 1996 Sep; 76(3):2020-32. PubMed ID: 8890311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short-term synaptic plasticity contributes to the temporal filtering of electrosensory information.
    Fortune ES; Rose GJ
    J Neurosci; 2000 Sep; 20(18):7122-30. PubMed ID: 10995860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The coding of signals in the electric communication of the gymnotiform fish Eigenmannia: from electroreceptors to neurons in the torus semicircularis of the midbrain.
    Metzner W; Heiligenberg W
    J Comp Physiol A; 1991 Aug; 169(2):135-50. PubMed ID: 1748973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrosensory maps form a substrate for the distributed and parallel control of behavioral responses in weakly electric fish.
    Heiligenberg W
    Brain Behav Evol; 1988; 31(1):6-16. PubMed ID: 3334906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallel projection of amplitude and phase information from the hindbrain to the midbrain of the African electric fish Gymnarchus niloticus.
    Kawasaki M; Guo YX
    J Neurosci; 1998 Sep; 18(18):7599-611. PubMed ID: 9736677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coding of stimuli by ampullary afferents in Gnathonemus petersii.
    Engelmann J; Gertz S; Goulet J; Schuh A; von der Emde G
    J Neurophysiol; 2010 Oct; 104(4):1955-68. PubMed ID: 20685928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrolocation in the presence of jamming signals: behavior.
    Bastian J
    J Comp Physiol A; 1987 Nov; 161(6):811-24. PubMed ID: 3430413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global electrosensory oscillations enhance directional responses of midbrain neurons in eigenmannia.
    Ramcharitar JU; Tan EW; Fortune ES
    J Neurophysiol; 2006 Nov; 96(5):2319-26. PubMed ID: 16790600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrolocation in the presence of jamming signals: electroreceptor physiology.
    Bastian J
    J Comp Physiol A; 1987 Nov; 161(6):825-36. PubMed ID: 3430414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and function of neurons in the complex of the nucleus electrosensorius of Sternopygus and Eigenmannia: diencephalic substrates for the evolution of the jamming avoidance response.
    Green RL; Rose GJ
    Brain Behav Evol; 2004; 64(2):85-103. PubMed ID: 15205544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function of electrosensory neurons in the torus semicircularis of Eigenmannia: morphological correlates of phase and amplitude sensitivity.
    Rose G; Heiligenberg W
    J Neurosci; 1985 Aug; 5(8):2269-80. PubMed ID: 4020437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Possible involvement of the ampullary electroreceptor system in detection of frequency-modulated electrocommunication signals in Eigenmannia.
    Naruse M; Kawasaki M
    J Comp Physiol A; 1998 Nov; 183(5):543-52. PubMed ID: 9839452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.