These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 9168027)
1. Time-resolved charge translocation by the Ca-ATPase from sarcoplasmic reticulum after an ATP concentration jump. Hartung K; Froehlich JP; Fendler K Biophys J; 1997 Jun; 72(6):2503-14. PubMed ID: 9168027 [TBL] [Abstract][Full Text] [Related]
2. The time-dependent distribution of phosphorylated intermediates in native sarcoplasmic reticulum Ca2+-ATPase from skeletal muscle is not compatible with a linear kinetic model. Mahaney JE; Thomas DD; Froehlich JP Biochemistry; 2004 Apr; 43(14):4400-16. PubMed ID: 15065885 [TBL] [Abstract][Full Text] [Related]
3. Changes in the profile structure of the sarcoplasmic reticulum membrane induced by phosphorylation of the Ca2+ ATPase enzyme in the presence of terbium: a time-resolved x-ray diffraction study. Asturias FJ; Fischetti RF; Blasie JK Biophys J; 1994 May; 66(5):1653-64. PubMed ID: 8061214 [TBL] [Abstract][Full Text] [Related]
4. Conformational transitions of the sarcoplasmic reticulum Ca-ATPase studied by time-resolved EPR and quenched-flow kinetics. Mahaney JE; Froehlich JP; Thomas DD Biochemistry; 1995 Apr; 34(14):4864-79. PubMed ID: 7718593 [TBL] [Abstract][Full Text] [Related]
5. Structural changes of the sarcoplasmic reticulum Ca(2+)-ATPase upon nucleotide binding studied by fourier transform infrared spectroscopy. von Germar F; Barth A; Mäntele W Biophys J; 2000 Mar; 78(3):1531-40. PubMed ID: 10692337 [TBL] [Abstract][Full Text] [Related]
6. The effect of monovalent and divalent cations on the ATP-dependent Ca2+-binding and phosphorylation during the reaction cycle of the sarcoplasmic reticulum Ca2+-transport ATPase. Medda P; Fassold E; Hasselbach W Eur J Biochem; 1987 Jun; 165(2):251-9. PubMed ID: 2954819 [TBL] [Abstract][Full Text] [Related]
7. Electrical pump currents generated by the Ca2+-ATPase of sarcoplasmic reticulum vesicles adsorbed on black lipid membranes. Hartung K; Grell E; Hasselbach W; Bamberg E Biochim Biophys Acta; 1987 Jun; 900(2):209-20. PubMed ID: 2954585 [TBL] [Abstract][Full Text] [Related]
9. ATP-Induced phosphorylation of the sarcoplasmic reticulum Ca2+ ATPase: molecular interpretation of infrared difference spectra. Barth A; Mäntele W Biophys J; 1998 Jul; 75(1):538-44. PubMed ID: 9649416 [TBL] [Abstract][Full Text] [Related]
10. The ATP-induced change of tryptophan fluorescence reflects a conformational change upon formation of ADP-sensitive phosphoenzyme in the sarcoplasmic reticulum Ca(2+)-ATPase. Stopped-flow spectrofluorometry and continuous flow-rapid quenching method. Nakamura S; Suzuki H; Kanazawa T J Biol Chem; 1994 Jun; 269(23):16015-9. PubMed ID: 8206898 [TBL] [Abstract][Full Text] [Related]
11. Phosphoenzyme decomposition in dog cardiac sarcoplasmic reticulum Ca2+-ATPase. Wang T Biochemistry; 1987 Dec; 26(25):8360-5. PubMed ID: 2964866 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of phosphoenzyme formation from phosphate and sarcoplasmic reticulum Ca(2+)-ATPase by vanadate binding to high- or low-affinity site on the enzyme. Yamasaki K; Yamamoto T J Biochem; 1992 Nov; 112(5):658-64. PubMed ID: 1478926 [TBL] [Abstract][Full Text] [Related]
13. Time-resolved infrared spectroscopy of the Ca2+-ATPase. The enzyme at work. Barth A; von Germar F; Kreutz W; Mäntele W J Biol Chem; 1996 Nov; 271(48):30637-46. PubMed ID: 8940039 [TBL] [Abstract][Full Text] [Related]
14. Pre-steady-state charge translocation in NaK-ATPase from eel electric organ. Fendler K; Jaruschewski S; Hobbs A; Albers W; Froehlich JP J Gen Physiol; 1993 Oct; 102(4):631-66. PubMed ID: 8270908 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the kinetics of calcium transport in vesicular dispersions and oriented multilayers of isolated sarcoplasmic reticulum membranes. Pierce DH; Scarpa A; Trentham DR; Topp MR; Blasie JK Biophys J; 1983 Dec; 44(3):365-73. PubMed ID: 6661492 [TBL] [Abstract][Full Text] [Related]
16. Electrogenic steps of the SR Ca-ATPase enzymatic cycle and the effect of curcumin. Bartolommei G; Tadini-Buoninsegni F; Moncelli MR; Guidelli R Biochim Biophys Acta; 2008 Feb; 1778(2):405-13. PubMed ID: 18005661 [TBL] [Abstract][Full Text] [Related]
17. The reaction mechanism of Ca(2+)-ATPase of sarcoplasmic reticulum. Direct measurement of the Mg.ATP dissociation constant gives similar values in the presence or absence of calcium. Lacapere JJ; Guillain F Eur J Biochem; 1993 Jan; 211(1-2):117-26. PubMed ID: 8425522 [TBL] [Abstract][Full Text] [Related]
18. Reaction mechanism of Ca2+ ATPase of sarcoplasmic reticulum. Equilibrium and transient study of phosphorylation with Ca.ATP as substrate. Lacapere JJ; Guillain F J Biol Chem; 1990 May; 265(15):8583-9. PubMed ID: 2140359 [TBL] [Abstract][Full Text] [Related]
19. A pK change of acidic residues contributes to cation countertransport in the Ca-ATPase of sarcoplasmic reticulum. Role of H+ in Ca(2+)-ATPase countertransport. Yu X; Hao L; Inesi G J Biol Chem; 1994 Jun; 269(24):16656-61. PubMed ID: 8206985 [TBL] [Abstract][Full Text] [Related]
20. Na(+) transport, and the E(1)P-E(2)P conformational transition of the Na(+)/K(+)-ATPase. Babes A; Fendler K Biophys J; 2000 Nov; 79(5):2557-71. PubMed ID: 11053130 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]