These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 9168035)

  • 1. Interaction of dystrophin fragments with model membranes.
    DeWolf C; McCauley P; Sikorski AF; Winlove CP; Bailey AI; Kahana E; Pinder JC; Gratzer WB
    Biophys J; 1997 Jun; 72(6):2599-604. PubMed ID: 9168035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability of the dystrophin rod domain fold: evidence for nested repeating units.
    Calvert R; Kahana E; Gratzer WB
    Biophys J; 1996 Sep; 71(3):1605-10. PubMed ID: 8874034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific anchoring modes of two distinct dystrophin rod sub-domains interacting in phospholipid Langmuir films studied by atomic force microscopy and PM-IRRAS.
    Vié V; Legardinier S; Chieze L; Le Bihan O; Qin Y; Sarkis J; Hubert JF; Renault A; Desbat B; Le Rumeur E
    Biochim Biophys Acta; 2010 Aug; 1798(8):1503-11. PubMed ID: 20399196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the complex association of bovine factor Va with acidic-lipid-containing synthetic membranes.
    Cutsforth GA; Koppaka V; Krishnaswamy S; Wu JR; Mann KG; Lentz BR
    Biophys J; 1996 Jun; 70(6):2938-49. PubMed ID: 8744332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of dystrophin rod domain with membrane phospholipids. Evidence of a close proximity between tryptophan residues and lipids.
    Le Rumeur E; Fichou Y; Pottier S; Gaboriau F; Rondeau-Mouro C; Vincent M; Gallay J; Bondon A
    J Biol Chem; 2003 Feb; 278(8):5993-6001. PubMed ID: 12480947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resisting sarcolemmal rupture: dystrophin repeats increase membrane-actin stiffness.
    Sarkis J; Vié V; Winder SJ; Renault A; Le Rumeur E; Hubert JF
    FASEB J; 2013 Jan; 27(1):359-67. PubMed ID: 23033320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping of the lipid-binding and stability properties of the central rod domain of human dystrophin.
    Legardinier S; Raguénès-Nicol C; Tascon C; Rocher C; Hardy S; Hubert JF; Le Rumeur E
    J Mol Biol; 2009 Jun; 389(3):546-58. PubMed ID: 19379759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Minimum folding unit of dystrophin rod domain.
    Kahana E; Gratzer WB
    Biochemistry; 1995 Jun; 34(25):8110-4. PubMed ID: 7794924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymorphism and interactions of a viral fusion peptide in a compressed lipid monolayer.
    Schwarz G; Taylor SE
    Biophys J; 1999 Jun; 76(6):3167-75. PubMed ID: 10354441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intermonolayer friction and surface shear viscosity of lipid bilayer membranes.
    den Otter WK; Shkulipa SA
    Biophys J; 2007 Jul; 93(2):423-33. PubMed ID: 17468168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformation and lipid binding properties of four peptides derived from the membrane-binding domain of CTP:phosphocholine cytidylyltransferase.
    Johnson JE; Rao NM; Hui SW; Cornell RB
    Biochemistry; 1998 Jun; 37(26):9509-19. PubMed ID: 9649334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical properties of dystrophin rod domain.
    Kahana E; Flood G; Gratzer WB
    Cell Motil Cytoskeleton; 1997; 36(3):246-52. PubMed ID: 9067620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. conformation and phasing of dystrophin structural repeats.
    Kahana E; Marsh PJ; Henry AJ; Way M; Gratzer WB
    J Mol Biol; 1994 Jan; 235(4):1271-7. PubMed ID: 8308889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Locations of local anesthetic dibucaine in model membranes and the interaction between dibucaine and a Na+ channel inactivation gate peptide as studied by 2H- and 1H-NMR spectroscopies.
    Kuroda Y; Ogawa M; Nasu H; Terashima M; Kasahara M; Kiyama Y; Wakita M; Fujiwara Y; Fujii N; Nakagawa T
    Biophys J; 1996 Sep; 71(3):1191-207. PubMed ID: 8873993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectrin-like repeats 11-15 of human dystrophin show adaptations to a lipidic environment.
    Sarkis J; Hubert JF; Legrand B; Robert E; Chéron A; Jardin J; Hitti E; Le Rumeur E; Vié V
    J Biol Chem; 2011 Sep; 286(35):30481-30491. PubMed ID: 21712383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholesterol favors the anchorage of human dystrophin repeats 16 to 21 in membrane at physiological surface pressure.
    Ameziane-Le Hir S; Raguénès-Nicol C; Paboeuf G; Nicolas A; Le Rumeur E; Vié V
    Biochim Biophys Acta; 2014 May; 1838(5):1266-73. PubMed ID: 24440661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of the specific lipid binding properties of Abeta 11-22 fragment at endosomal pH.
    Ravault S; Flore C; Saurel O; Milon A; Brasseur R; Lins L
    Langmuir; 2009 Sep; 25(18):10948-53. PubMed ID: 19735146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PrP(106-126) does not interact with membranes under physiological conditions.
    Henriques ST; Pattenden LK; Aguilar MI; Castanho MA
    Biophys J; 2008 Aug; 95(4):1877-89. PubMed ID: 18469080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Permeabilization and fusion of uncharged lipid vesicles induced by the HIV-1 fusion peptide adopting an extended conformation: dose and sequence effects.
    Pereira FB; Goñi FM; Muga A; Nieva JL
    Biophys J; 1997 Oct; 73(4):1977-86. PubMed ID: 9336193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A thermodynamic and structural study of myelin basic protein in lipid membrane models.
    Rispoli P; Carzino R; Svaldo-Lanero T; Relini A; Cavalleri O; Fasano A; Liuzzi GM; Carlone G; Riccio P; Gliozzi A; Rolandi R
    Biophys J; 2007 Sep; 93(6):1999-2010. PubMed ID: 17513373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.