These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 916814)

  • 1. Inhibition of cardiac creatine phosphokinase by fluorodinitrobenzene.
    Yang WC; Dubick M
    Life Sci; 1977 Oct; 21(8):1171-7. PubMed ID: 916814
    [No Abstract]   [Full Text] [Related]  

  • 2. [Effect of creatine phosphate synthesis on the membrane potential of mitochondria].
    Liberman EA; Khachatrian GI; Tsofina LM
    Biofizika; 1979; 24(2):346-8. PubMed ID: 444623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protective effect of creatine against inhibition by methylglyoxal of mitochondrial respiration of cardiac cells.
    Roy SS; Biswas S; Ray M; Ray S
    Biochem J; 2003 Jun; 372(Pt 2):661-9. PubMed ID: 12605598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of protein and lipid synthesis in muscle by 2,4-dinitrofluorobenzene, an inhibitor of creatine phosphokinase.
    Carpenter CL; Mohan C; Bessman SP
    Biochem Biophys Res Commun; 1983 Mar; 111(3):884-9. PubMed ID: 6838591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of myofibrillar creatine kinase in the relaxation of rigor tension in skinned cardiac muscle.
    Ventura-Clapier R; Vassort G
    Pflugers Arch; 1985 May; 404(2):157-61. PubMed ID: 3874393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Affinity modification of creatine kinase and ATP-ADP translocase in heart mitochondria: determination of their stoichiometric ratio].
    Kuznetsov AV; Saks VA
    Biokhimiia; 1986 Sep; 51(9):1426-37. PubMed ID: 3021243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Determination of molar content of creatine kinase in heart mitochondria by SH-reagents].
    Kupriianov VV; Elizarova GV; Saks VA
    Biokhimiia; 1981 May; 46(5):930-41. PubMed ID: 6271262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The inhibition of mitochondrial F1-ATPase by 1,5-difluoro-2,4-dinitrobenzene.
    Akhrem AA; Kisel MA; Kozlov IA; Tsybovsky IS; Vulfson EN
    FEBS Lett; 1985 Aug; 187(2):249-52. PubMed ID: 2862061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP- and ADP-induced rat platelet aggregation: significance of plasma in ATP-induced aggregation.
    Haskel EJ; Agarwal KC; Parks RE
    Thromb Haemost; 1980 Feb; 42(5):1580-8. PubMed ID: 7368159
    [No Abstract]   [Full Text] [Related]  

  • 10. [Comparative studies on the influence of creatine phosphate and creatinine phosphate on respiration and oxidative phosphorylation of isolated heart and liver mitochondria].
    Noack E
    Arzneimittelforschung; 1973 Aug; 23(8):1037-41. PubMed ID: 4801023
    [No Abstract]   [Full Text] [Related]  

  • 11. The creatine-creatine phosphate shuttle for energy transport-compartmentation of creatine phosphokinase in muscle.
    Erickson-Viitanen S; Geiger P; Yang WC; Bessman SP
    Adv Exp Med Biol; 1982; 151():115-25. PubMed ID: 6217725
    [No Abstract]   [Full Text] [Related]  

  • 12. Energy balance in DNFB-treated and untreated frog muscle.
    Curtin NA; Woledge RC
    J Physiol; 1975 Apr; 246(3):737-52. PubMed ID: 1079537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Creatine kinase is required for swelling-activated K-Cl cotransport in dog red blood cells.
    Colclasure GC; Parker JC; Dunham PB
    Am J Physiol; 1995 Mar; 268(3 Pt 1):C660-8. PubMed ID: 7900773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Creatine kinase and mitochondrial respiration in hearts of trout, cod and freshwater turtle.
    Birkedal R; Gesser H
    J Comp Physiol B; 2003 Aug; 173(6):493-9. PubMed ID: 12856133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolite channeling: a phosphorylcreatine shuttle to mediate high energy phosphate transport between sperm mitochondrion and tail.
    Tombes RM; Shapiro BM
    Cell; 1985 May; 41(1):325-34. PubMed ID: 3995586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Essential arginine residues of creatine kinase from beef heart mitochondria.
    Severin SE; Belousova LV; Moskvitina EL
    Biochem Int; 1983 Feb; 6(2):149-56. PubMed ID: 6332626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of heart oxidative phosphorylation by creatine kinase in mitochondrial membranes.
    Jacobus WE; Moreadith RW; Vandegaer KM
    Ann N Y Acad Sci; 1983; 414():73-89. PubMed ID: 6584077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of phosphocreatine plus ADP as energy source for motility of membrane-deprived trout spermatozoa.
    Saudrais C; Fierville F; Loir M; Le Rumeur E; Cibert C; Cosson J
    Cell Motil Cytoskeleton; 1998; 41(2):91-106. PubMed ID: 9786085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Respiratory control and the integration of heart high-energy phosphate metabolism by mitochondrial creatine kinase.
    Jacobus WE
    Annu Rev Physiol; 1985; 47():707-25. PubMed ID: 3888084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ischaemic metabolic factors-high inorganic phosphate and acidosis--modulate mitochondrial creatine kinase functional activity in skinned cardiac fibres.
    Veksler V; Ventura-Clapier R
    J Mol Cell Cardiol; 1994 Mar; 26(3):335-9. PubMed ID: 8028016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.