These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Ion-channels formed by hypelcins, antibiotic peptides, in planar bilayer lipid membranes. Koide N; Asami K; Fujita T Biochim Biophys Acta; 1997 May; 1326(1):47-53. PubMed ID: 9188799 [TBL] [Abstract][Full Text] [Related]
25. Potentiation by apamin of histamine-stimulated catecholamine biosynthesis and tyrosine hydroxylase phosphorylation in cultured bovine adrenal chromaffin cells. Kitamura K; Houchi H; Yoshizumi M; Matsumoto K; Oka M Tokushima J Exp Med; 1996 Jun; 43(1-2):17-23. PubMed ID: 8885685 [TBL] [Abstract][Full Text] [Related]
26. The influence of the trichorzianin C-terminal residues on the ion channel conductance in lipid bilayers. Duclohier H; Molle G; Spach G Biochim Biophys Acta; 1989 Dec; 987(1):133-6. PubMed ID: 2480816 [TBL] [Abstract][Full Text] [Related]
27. Chronic lithium treatment up-regulates cell surface Na(V)1.7 sodium channels via inhibition of glycogen synthase kinase-3 in adrenal chromaffin cells: enhancement of Na(+) influx, Ca(2+) influx and catecholamine secretion after lithium withdrawal. Yanagita T; Maruta T; Nemoto T; Uezono Y; Matsuo K; Satoh S; Yoshikawa N; Kanai T; Kobayashi H; Wada A Neuropharmacology; 2009 Sep; 57(3):311-21. PubMed ID: 19486905 [TBL] [Abstract][Full Text] [Related]
28. Fungal metabolites. XVI. Structures of new peptaibols, trichokindins I-VII, from the fungus Trichoderma harzianum. Iida A; Sanekata M; Fujita T; Tanaka H; Enoki A; Fuse G; Kanai M; Rudewicz PJ; Tachikawa E Chem Pharm Bull (Tokyo); 1994 May; 42(5):1070-5. PubMed ID: 8069958 [TBL] [Abstract][Full Text] [Related]
29. Blockade by NNC 55-0396, mibefradil, and nickel of calcium and exocytotic signals in chromaffin cells: implications for the regulation of hypoxia-induced secretion at early life. Fernández-Morales JC; Fernando Padín J; Vestring S; Musial DC; de Diego AM; García AG Eur J Pharmacol; 2015 Mar; 751():1-12. PubMed ID: 25622555 [TBL] [Abstract][Full Text] [Related]
30. Agonist-stimulated neuropeptide and catecholamine release from bovine adrenal chromaffin cells. Bundey RA; Toneff T; Pottenger J; Kennedy BP; Ziegler MG; Hook VY Ann N Y Acad Sci; 2002 Oct; 971():338-40. PubMed ID: 12438146 [No Abstract] [Full Text] [Related]
31. Glucagon does not affect catecholamine release in primary cultures of bovine adrenal chromaffin cells. Sharabi Y; Zimlichman R; Alesci S; Huynh T; Mansouri R; Chun J; Perera S; Pacak K; Goldstein DS Horm Metab Res; 2005 Apr; 37(4):205-8. PubMed ID: 15952078 [TBL] [Abstract][Full Text] [Related]
32. Alamethicin-like behaviour of new 18-residue peptaibols, trichorzins PA. Role of the C-terminal amino-alcohol in the ion channel forming activity. Duval D; Cosette P; Rebuffat S; Duclohier H; Bodo B; Molle G Biochim Biophys Acta; 1998 Mar; 1369(2):309-19. PubMed ID: 9518665 [TBL] [Abstract][Full Text] [Related]
33. Etomidate elevates intracellular calcium levels and promotes catecholamine secretion in bovine chromaffin cells. Xie Z; Currie KP; Fox AP J Physiol; 2004 Nov; 560(Pt 3):677-90. PubMed ID: 15331676 [TBL] [Abstract][Full Text] [Related]
34. Transcriptional up-regulation of cell surface Na V 1.7 sodium channels by insulin-like growth factor-1 via inhibition of glycogen synthase kinase-3β in adrenal chromaffin cells: enhancement of 22Na+ influx, 45Ca2+ influx and catecholamine secretion. Yanagita T; Satoh S; Uezono Y; Matsuo K; Nemoto T; Maruta T; Yoshikawa N; Iwakiri T; Minami K; Murakami M Neuropharmacology; 2011 Dec; 61(8):1265-74. PubMed ID: 21816165 [TBL] [Abstract][Full Text] [Related]
36. Inhibitory action of cilostazol, a phosphodiesterase III inhibitor, on catecholamine secretion from cultured bovine adrenal chromaffin cells. Azuma M; Houchi H; Mizuta M; Kinoshita M; Teraoka K; Minakuchi K J Cardiovasc Pharmacol; 2003 Jan; 41 Suppl 1():S29-32. PubMed ID: 12688393 [TBL] [Abstract][Full Text] [Related]
37. Reduced availability of voltage-gated sodium channels by depolarization or blockade by tetrodotoxin boosts burst firing and catecholamine release in mouse chromaffin cells. Vandael DH; Ottaviani MM; Legros C; Lefort C; Guérineau NC; Allio A; Carabelli V; Carbone E J Physiol; 2015 Feb; 593(4):905-27. PubMed ID: 25620605 [TBL] [Abstract][Full Text] [Related]
38. Ion channels of N-terminally linked alamethicin dimers: enhancement of cation-selectivity by substitution of Glu for Gln at position 7. Okazaki T; Nagaoka Y; Asami K Bioelectrochemistry; 2007 May; 70(2):380-6. PubMed ID: 16814617 [TBL] [Abstract][Full Text] [Related]
39. Differential inhibition of catecholamine secretion by amitriptyline through blockage of nicotinic receptors, sodium channels, and calcium channels in bovine adrenal chromaffin cells. Park TJ; Shin SY; Suh BC; Suh EK; Lee IS; Kim YS; Kim KT Synapse; 1998 Jul; 29(3):248-56. PubMed ID: 9635895 [TBL] [Abstract][Full Text] [Related]
40. Potentiation by ouabain of catecholamine secretion from bovine adrenal chromaffin cells in culture induced by pituitary adenylate cyclase-activating polypeptide: evidence for involvements of Na+ and Ca2+ movements. Azuma M; Houchi H; Minakuchi K; Oka M; Takasugi M Tokushima J Exp Med; 1996 Dec; 43(3-4):113-9. PubMed ID: 9100459 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]