These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 9168395)

  • 1. Measurements of velocity and wall shear stress inside a PTFE vascular graft model under steady flow conditions.
    Loth F; Jones SA; Giddens DP; Bassiouny HS; Glagov S; Zarins CK
    J Biomech Eng; 1997 May; 119(2):187-94. PubMed ID: 9168395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative contribution of wall shear stress and injury in experimental intimal thickening at PTFE end-to-side arterial anastomoses.
    Loth F; Jones SA; Zarins CK; Giddens DP; Nassar RF; Glagov S; Bassiouny HS
    J Biomech Eng; 2002 Feb; 124(1):44-51. PubMed ID: 11871604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow dynamics across end-to-end vascular bypass graft anastomoses.
    Kim YH; Chandran KB; Bower TJ; Corson JD
    Ann Biomed Eng; 1993; 21(4):311-20. PubMed ID: 8214816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow waveform effects on end-to-side anastomotic flow patterns.
    Ethier CR; Steinman DA; Zhang X; Karpik SR; Ojha M
    J Biomech; 1998 Jul; 31(7):609-17. PubMed ID: 9796683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulsatile flow in an end-to-side vascular graft model: comparison of computations with experimental data.
    Lei M; Giddens DP; Jones SA; Loth F; Bassiouny H
    J Biomech Eng; 2001 Feb; 123(1):80-7. PubMed ID: 11277306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Influences of graft diameter on the blood flow in 2-way bypassing surgery].
    Qiao A; Liu Y; Zhang S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):346-50, 377. PubMed ID: 18610620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluid dynamics, wall mechanics, and oxygen transfer in peripheral bypass anastomoses.
    Perktold K; Leuprecht A; Prosi M; Berk T; Czerny M; Trubel W; Schima H
    Ann Biomed Eng; 2002 Apr; 30(4):447-60. PubMed ID: 12085997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational investigations of a new prosthetic femoral-popliteal bypass graft design.
    O'Brien TP; Grace P; Walsh M; Burke P; McGloughlin T
    J Vasc Surg; 2005 Dec; 42(6):1169-75. PubMed ID: 16376210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of out-of-plane geometry on pulsatile flow within a distal end-to-side anastomosis.
    Papaharilaou Y; Doorly DJ; Sherwin SJ
    J Biomech; 2002 Sep; 35(9):1225-39. PubMed ID: 12163312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compliance and diameter mismatch affect the wall shear rate distribution near an end-to-end anastomosis.
    Weston MW; Rhee K; Tarbell JM
    J Biomech; 1996 Feb; 29(2):187-98. PubMed ID: 8849812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interposition vein cuff anastomosis alters wall shear stress distribution in the recipient artery.
    How TV; Rowe CS; Gilling-Smith GL; Harris PL
    J Vasc Surg; 2000 May; 31(5):1008-17. PubMed ID: 10805893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of graft caliber upon wall shear within in vivo distal vascular anastomoses.
    Keynton RS; Evancho MM; Sims RL; Rittgers SE
    J Biomech Eng; 1999 Feb; 121(1):79-88. PubMed ID: 10080093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On using experimentally estimated wall shear stresses to validate numerically predicted results.
    Walsh M; McGloughlin T; Liepsch DW; O'Brien T; Morris L; Ansari AR
    Proc Inst Mech Eng H; 2003; 217(2):77-90. PubMed ID: 12666774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro testing of a newly developed arteriovenous double-outflow graft.
    Heise M; Kirschner P; Rabsch A; Zanow J; Settmacher U; Heidenhain C
    J Vasc Surg; 2010 Aug; 52(2):421-8. PubMed ID: 20591600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wall shear stresses in small and large two-way bypass grafts.
    Qiao A; Liu Y; Guo Z
    Med Eng Phys; 2006 Apr; 28(3):251-8. PubMed ID: 16029954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of angle and flow rate upon hemodynamics in distal vascular graft anastomoses: a numerical model study.
    Fei DY; Thomas JD; Rittgers SE
    J Biomech Eng; 1994 Aug; 116(3):331-6. PubMed ID: 7799636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geometric design improvements for femoral graft-artery junctions mitigating restenosis.
    Lei M; Kleinstreuer C; Archie JP
    J Biomech; 1996 Dec; 29(12):1605-14. PubMed ID: 8945659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A numerical study of blood flow patterns in anatomically realistic and simplified end-to-side anastomoses.
    Moore JA; Steinman DA; Prakash S; Johnston KW; Ethier CR
    J Biomech Eng; 1999 Jun; 121(3):265-72. PubMed ID: 10396691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of a flow-streamlining implant at the distal anastomosis of a coronary artery bypass graft.
    Anayiotos AS; Pedroso PD; Eleftheriou EC; Venugopalan R; Holman WL
    Ann Biomed Eng; 2002; 30(7):917-26. PubMed ID: 12398422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal graft diameter: effect of wall shear stress on vascular healing.
    Binns RL; Ku DN; Stewart MT; Ansley JP; Coyle KA
    J Vasc Surg; 1989 Sep; 10(3):326-37. PubMed ID: 2778897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.