BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 9168606)

  • 41. Heterologous expression of an endogenous rat cytochrome b(5)/cytochrome b(5) reductase fusion protein: identification of histidines 62 and 85 as the heme axial ligands.
    Davis CA; Dhawan IK; Johnson MK; Barber MJ
    Arch Biochem Biophys; 2002 Apr; 400(1):63-75. PubMed ID: 11913972
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors.
    Unden G; Bongaerts J
    Biochim Biophys Acta; 1997 Jul; 1320(3):217-34. PubMed ID: 9230919
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stoichiometric studies on the oxidation of tetrahydropterin with ferri-cytochrome c.
    Hasegawa H; Nakanishi N; Akino M
    J Biochem; 1978 Sep; 84(3):499-506. PubMed ID: 214425
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functional interactions in cytochrome P450BM3. Fatty acid substrate binding alters electron-transfer properties of the flavoprotein domain.
    Murataliev MB; Feyereisen R
    Biochemistry; 1996 Nov; 35(47):15029-37. PubMed ID: 8942669
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reduction of hydroxamic acids to the corresponding amides catalyzed by rabbit blood.
    Sugihara K; Kitamura S; Ohta S; Tatsumi K
    Xenobiotica; 2000 May; 30(5):457-67. PubMed ID: 10875680
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Redox cycling of resorufin catalyzed by rat liver microsomal NADPH-cytochrome P450 reductase.
    Dutton DR; Reed GA; Parkinson A
    Arch Biochem Biophys; 1989 Feb; 268(2):605-16. PubMed ID: 2464338
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spectroscopic and kinetic properties of a recombinant form of the flavin domain of spinach NADH: nitrate reductase.
    Quinn GB; Trimboli AJ; Prosser IM; Barber MJ
    Arch Biochem Biophys; 1996 Mar; 327(1):151-60. PubMed ID: 8615685
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Studies on the electron-transfer mechanism of the human neutrophil NADPH oxidase.
    Ellis JA; Cross AR; Jones OT
    Biochem J; 1989 Sep; 262(2):575-9. PubMed ID: 2553003
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Import of cytochrome c into mitochondria: reduction of heme, mediated by NADH and flavin nucleotides, is obligatory for its covalent linkage to apocytochrome c.
    Nicholson DW; Neupert W
    Proc Natl Acad Sci U S A; 1989 Jun; 86(12):4340-4. PubMed ID: 2543970
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hydrogenase encapsulation into red blood cells and regeneration of electron acceptor.
    Axley MJ; Dad LK; Harabin AL
    Biotechnol Appl Biochem; 1996 Oct; 24(2):95-100. PubMed ID: 8865603
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regulation of the aerobic respiratory chain in the facultatively aerobic and hyperthermophilic archaeon Pyrobaculum oguniense.
    Nunoura T; Sako Y; Wakagi T; Uchida A
    Microbiology (Reading); 2003 Mar; 149(Pt 3):673-688. PubMed ID: 12634336
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interdomain electron transfer in flavohaemoglobin from Candida norvegensis with antibiotic azole compounds.
    Kobayashi K; Igarashi J; Kozawa T
    FEBS Lett; 2022 Apr; 596(7):938-946. PubMed ID: 35253217
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spectroscopic properties of Escherichia coli UDP-N-acetylenolpyruvylglucosamine reductase.
    Axley MJ; Fairman R; Yanchunas J; Villafranca JJ; Robertson JG
    Biochemistry; 1997 Jan; 36(4):812-22. PubMed ID: 9020779
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Direct electrochemistry and Os-polymer-mediated bioelectrocatalysis of NADH oxidation by Escherichia coli flavohemoglobin at graphite electrodes.
    Sosna M; Bonamore A; Gorton L; Boffi A; Ferapontova EE
    Biosens Bioelectron; 2013 Apr; 42():219-24. PubMed ID: 23208089
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stopped-flow, laser-flash photolysis studies on the reactions of CO and O2 with the cytochrome caa3 complex from Bacillus subtilis: conservation of electron transfer pathways from cytochrome c to O2.
    Hill BC
    Biochemistry; 1996 May; 35(19):6136-43. PubMed ID: 8634256
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electron transfer reactions in the NADPH oxidase system of neutrophils--involvement of an NADPH-cytochrome c reductase in the oxidase system.
    Fujii H; Kakinuma K
    Biochim Biophys Acta; 1991 Nov; 1095(3):201-9. PubMed ID: 1659905
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Bacterial Multidomain NAD-Independent d-Lactate Dehydrogenase Utilizes Flavin Adenine Dinucleotide and Fe-S Clusters as Cofactors and Quinone as an Electron Acceptor for d-Lactate Oxidization.
    Jiang T; Guo X; Yan J; Zhang Y; Wang Y; Zhang M; Sheng B; Ma C; Xu P; Gao C
    J Bacteriol; 2017 Nov; 199(22):. PubMed ID: 28847921
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The existence of a lysosomal redox chain and the role of ubiquinone.
    Gille L; Nohl H
    Arch Biochem Biophys; 2000 Mar; 375(2):347-54. PubMed ID: 10700391
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Superoxide anion production by lipoamide dehydrogenase redox-cycling: effect of enzyme modifiers.
    Grinblat L; Sreider CM; Stoppani AO
    Biochem Int; 1991 Jan; 23(1):83-92. PubMed ID: 1650556
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The steady state kinetics of the NADH-dependent nitrite reductase from Escherichia coli K12. The reduction of single-electron acceptors.
    Jackson RH; Cole JA; Cornish-Bowden A
    Biochem J; 1982 May; 203(2):505-10. PubMed ID: 6288003
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.