These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 9168622)
21. Genetic and phenotypic comparison of facultative methylotrophy between Methylobacterium extorquens strains PA1 and AM1. Nayak DD; Marx CJ PLoS One; 2014; 9(9):e107887. PubMed ID: 25232997 [TBL] [Abstract][Full Text] [Related]
22. Identification of an upstream regulatory sequence that mediates the transcription of mox genes in Methylobacterium extorquens AM1. Zhang M; FitzGerald KA; Lidstrom ME Microbiology (Reading); 2005 Nov; 151(Pt 11):3723-3728. PubMed ID: 16272393 [TBL] [Abstract][Full Text] [Related]
23. Development of an insertional expression vector system for Methylobacterium extorquens AM1 and generation of null mutants lacking mtdA and/or fch. Marx CJ; Lidstrom ME Microbiology (Reading); 2004 Jan; 150(Pt 1):9-19. PubMed ID: 14702393 [TBL] [Abstract][Full Text] [Related]
24. Transcriptional analysis of pqqD and study of the regulation of pyrroloquinoline quinone biosynthesis in Methylobacterium extorquens AM1. Ramamoorthi R; Lidstrom ME J Bacteriol; 1995 Jan; 177(1):206-11. PubMed ID: 8002620 [TBL] [Abstract][Full Text] [Related]
25. Genetics of the serine cycle in Methylobacterium extorquens AM1: identification of sgaA and mtdA and sequences of sgaA, hprA, and mtdA. Chistoserdova LV; Lidstrom ME J Bacteriol; 1994 Apr; 176(7):1957-68. PubMed ID: 8144463 [TBL] [Abstract][Full Text] [Related]
26. QscR-mediated transcriptional activation of serine cycle genes in Methylobacterium extorquens AM1. Kalyuzhnaya MG; Lidstrom ME J Bacteriol; 2005 Nov; 187(21):7511-7. PubMed ID: 16237034 [TBL] [Abstract][Full Text] [Related]
27. Sequence and functional analysis of an Escherichia coli DNA fragment able to complement pqqE and pqqF mutants from Methylobacterium organophilum. Turlin E; Gasser F; Biville F Biochimie; 1996; 78(10):823-31. PubMed ID: 9116051 [TBL] [Abstract][Full Text] [Related]
28. pqqA is not required for biosynthesis of pyrroloquinoline quinone in Methylobacterium extorquens AM1. Toyama H; Lidstrom ME Microbiology (Reading); 1998 Jan; 144 ( Pt 1)():183-191. PubMed ID: 9467911 [TBL] [Abstract][Full Text] [Related]
29. Organization of the methylamine utilization (mau) genes in Methylophilus methylotrophus W3A1-NS. Chistoserdov AY; McIntire WS; Mathews FS; Lidstrom ME J Bacteriol; 1994 Jul; 176(13):4073-80. PubMed ID: 8021188 [TBL] [Abstract][Full Text] [Related]
30. Genetic organization of methylamine utilization genes from Methylobacterium extorquens AM1. Chistoserdov AY; Tsygankov YD; Lidstrom ME J Bacteriol; 1991 Sep; 173(18):5901-8. PubMed ID: 1653226 [TBL] [Abstract][Full Text] [Related]
31. Poly-beta-hydroxybutyrate biosynthesis in the facultative methylotroph methylobacterium extorquens AM1: identification and mutation of gap11, gap20, and phaR. Korotkova N; Chistoserdova L; Lidstrom ME J Bacteriol; 2002 Nov; 184(22):6174-81. PubMed ID: 12399487 [TBL] [Abstract][Full Text] [Related]
32. Identification of a fourth formate dehydrogenase in Methylobacterium extorquens AM1 and confirmation of the essential role of formate oxidation in methylotrophy. Chistoserdova L; Crowther GJ; Vorholt JA; Skovran E; Portais JC; Lidstrom ME J Bacteriol; 2007 Dec; 189(24):9076-81. PubMed ID: 17921299 [TBL] [Abstract][Full Text] [Related]
33. Reconstruction of C(3) and C(4) metabolism in Methylobacterium extorquens AM1 using transposon mutagenesis. Van Dien SJ; Okubo Y; Hough MT; Korotkova N; Taitano T; Lidstrom ME Microbiology (Reading); 2003 Mar; 149(Pt 3):601-609. PubMed ID: 12634329 [TBL] [Abstract][Full Text] [Related]
34. Characterization and nucleotide sequence of pqqE and pqqF in Methylobacterium extorquens AM1. Springer AL; Ramamoorthi R; Lidstrom ME J Bacteriol; 1996 Apr; 178(7):2154-7. PubMed ID: 8606199 [TBL] [Abstract][Full Text] [Related]
35. Nucleotide sequence of the amicyanin gene from Methylobacterium extorquens AM1. Chistoserdov AY; Tsygankov YD; Lidstrom ME DNA Seq; 1991; 2(1):53-5. PubMed ID: 1802036 [TBL] [Abstract][Full Text] [Related]
36. Lanthanide-Dependent Regulation of Methanol Oxidation Systems in Methylobacterium extorquens AM1 and Their Contribution to Methanol Growth. Vu HN; Subuyuj GA; Vijayakumar S; Good NM; Martinez-Gomez NC; Skovran E J Bacteriol; 2016 Apr; 198(8):1250-9. PubMed ID: 26833413 [TBL] [Abstract][Full Text] [Related]
37. Construction of insertion and deletion mxa mutants of Methylobacterium extorquens AM1 by electroporation. Toyama H; Anthony C; Lidstrom ME FEMS Microbiol Lett; 1998 Sep; 166(1):1-7. PubMed ID: 9741078 [TBL] [Abstract][Full Text] [Related]
38. A protein having similarity with methylmalonyl-CoA mutase is required for the assimilation of methanol and ethanol by Methylobacterium extorquens AM1. Smith LM; Meijer WG; Dijkhuizen L; Goodwin PM Microbiology (Reading); 1996 Mar; 142 ( Pt 3)():675-684. PubMed ID: 8868443 [TBL] [Abstract][Full Text] [Related]
39. Replacing the Ethylmalonyl-CoA Pathway with the Glyoxylate Shunt Provides Metabolic Flexibility in the Central Carbon Metabolism of Methylobacterium extorquens AM1. Schada von Borzyskowski L; Sonntag F; Pöschel L; Vorholt JA; Schrader J; Erb TJ; Buchhaupt M ACS Synth Biol; 2018 Jan; 7(1):86-97. PubMed ID: 29216425 [TBL] [Abstract][Full Text] [Related]
40. Identification and mutation of a gene required for glycerate kinase activity from a facultative methylotroph, Methylobacterium extorquens AM1. Chistoserdova L; Lidstrom ME J Bacteriol; 1997 Aug; 179(15):4946-8. PubMed ID: 9244287 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]