These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
76 related articles for article (PubMed ID: 9168981)
1. A dtsR gene-disrupted mutant of Brevibacterium lactofermentum requires fatty acids for growth and efficiently produces L-glutamate in the presence of an excess of biotin. Kimura E; Abe C; Kawahara Y; Nakamatsu T; Tokuda H Biochem Biophys Res Commun; 1997 May; 234(1):157-61. PubMed ID: 9168981 [TBL] [Abstract][Full Text] [Related]
2. Molecular cloning of a novel gene, dtsR, which rescues the detergent sensitivity of a mutant derived from Brevibacterium lactofermentum. Kimura E; Abe C; Kawahara Y; Nakamatsu T Biosci Biotechnol Biochem; 1996 Oct; 60(10):1565-70. PubMed ID: 8987652 [TBL] [Abstract][Full Text] [Related]
3. Role of biotin in the production of lysine by Brevibacterium lactofermentum. Ko YT; Chipley JR Microbios; 1984; 40(161-162):161-71. PubMed ID: 6434904 [TBL] [Abstract][Full Text] [Related]
4. Glutamate Overproduction in Corynebacterium glutamicum Triggered by a Decrease in the Level of a Complex Comprising DtsR and a Biotin-containing Subunit. Kimura E; Yagoshi C; Kawahara Y; Ohsumi T; Nakamatsu T; Tokuda H Biosci Biotechnol Biochem; 1999; 63(7):1274-8. PubMed ID: 27380236 [TBL] [Abstract][Full Text] [Related]
5. Mitochondrial transporters involved in oleic acid utilization and glutamate metabolism in yeast. Trotter PJ; Adamson AL; Ghrist AC; Rowe L; Scott LR; Sherman MP; Stites NC; Sun Y; Tawiah-Boateng MA; Tibbetts AS; Wadington MC; West AC Arch Biochem Biophys; 2005 Oct; 442(1):21-32. PubMed ID: 16140254 [TBL] [Abstract][Full Text] [Related]
6. Two Delta9-stearic acid desaturases are required for Aspergillus nidulans growth and development. Wilson RA; Chang PK; Dobrzyn A; Ntambi JM; Zarnowski R; Keller NP Fungal Genet Biol; 2004 May; 41(5):501-9. PubMed ID: 15050539 [TBL] [Abstract][Full Text] [Related]
7. Analysis of the biotin biosynthesis pathway in coryneform bacteria: cloning and sequencing of the bioB gene from Brevibacterium flavum. Hatakeyama K; Kohama K; Vertès AA; Kobayashi M; Kurusu Y; Yukawa H DNA Seq; 1993; 4(2):87-93. PubMed ID: 8173080 [TBL] [Abstract][Full Text] [Related]
8. Factors improving L-threonine production by a three L-threonine biosynthetic genes-amplified recombinant strain of Brevibacterium lactofermentum. Ishida M; Kawashima H; Sato K; Hashiguchi K; Ito H; Enei H; Nakamori S Biosci Biotechnol Biochem; 1994 Apr; 58(4):768-70. PubMed ID: 7764868 [TBL] [Abstract][Full Text] [Related]
9. Genetic breeding of L-tyrosine producer from Brevibacterium lactofermentum. Ito H; Sakurai S; Tanaka T; Sato K; Enei H Agric Biol Chem; 1990 Mar; 54(3):699-705. PubMed ID: 1369436 [TBL] [Abstract][Full Text] [Related]
10. Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG. Schultz C; Niebisch A; Gebel L; Bott M Appl Microbiol Biotechnol; 2007 Sep; 76(3):691-700. PubMed ID: 17437098 [TBL] [Abstract][Full Text] [Related]
11. Construction of L-lysine-overproducing strains of Brevibacterium lactofermentum by targeted disruption of the hom and thrB genes. Fernández-González C; Gil JA; Mateos LM; Schwarzer A; Schäfer A; Kalinowski J; Pühler A; Martín JF Appl Microbiol Biotechnol; 1996 Dec; 46(5-6):554-8. PubMed ID: 9008889 [TBL] [Abstract][Full Text] [Related]
12. Relationship between the glutamate production and the activity of 2-oxoglutarate dehydrogenase in Brevibacterium lactofermentum. Kawahara Y; Takahashi-Fuke K; Shimizu E; Nakamatsu T; Nakamori S Biosci Biotechnol Biochem; 1997 Jul; 61(7):1109-12. PubMed ID: 9255973 [TBL] [Abstract][Full Text] [Related]
13. Isolation of the murI gene from Brevibacterium lactofermentum ATCC 13869 encoding D-glutamate racemase. Malathi KC; Wachi M; Nagai K FEMS Microbiol Lett; 1999 Jun; 175(2):193-6. PubMed ID: 10386367 [TBL] [Abstract][Full Text] [Related]
14. GltS, the sodium-coupled L-glutamate uptake system of Corynebacterium glutamicum: identification of the corresponding gene and impact on L-glutamate production. Trötschel C; Kandirali S; Diaz-Achirica P; Meinhardt A; Morbach S; Krämer R; Burkovski A Appl Microbiol Biotechnol; 2003 Feb; 60(6):738-42. PubMed ID: 12664155 [TBL] [Abstract][Full Text] [Related]
15. Effect of biotin on the bacterial formation of glutamic acid. I. Glutamate formation and cellular premeability of amino acids. SHIIO I; OTSUKA SI; TAKAHASHI M J Biochem; 1962 Jan; 51():56-62. PubMed ID: 13911888 [No Abstract] [Full Text] [Related]
16. [Biosynthesis of glutamic acid by a Brevibacterium flavum 258-906 mutant on molasses media]. Beshkov M; Ploshtakova M; Murgov I; Ianakieva N Acta Microbiol Bulg; 1982; 10():55-60. PubMed ID: 6128869 [No Abstract] [Full Text] [Related]
17. Energetics underlying the process of long-chain fatty acid transport. Azizan A; Sherin D; DiRusso CC; Black PN Arch Biochem Biophys; 1999 May; 365(2):299-306. PubMed ID: 10328825 [TBL] [Abstract][Full Text] [Related]
18. A Brevibacterium lactofermentum 16S rRNA gene used as target site for homologous recombination. Amador E; Martín JF; Castro JM FEMS Microbiol Lett; 2000 Apr; 185(2):199-204. PubMed ID: 10754248 [TBL] [Abstract][Full Text] [Related]
19. Expression of the genes coding for the xylanase Xys1 and the cellulase Cel1 from the straw-decomposing Streptomyces halstedii JM8 cloned into the amino-acid producer Brevibacterium lactofermentum ATCC13869. Adham SA; Honrubia P; Díaz M; Fernández-Abalos JM; Santamaría RI; Gil JA Arch Microbiol; 2001 Dec; 177(1):91-7. PubMed ID: 11797049 [TBL] [Abstract][Full Text] [Related]
20. BioS, a biotin-induced, stationary-phase, and possible LysR-type regulator in Sinorhizobium meliloti. Heinz EB; Phillips DA; Streit WR Mol Plant Microbe Interact; 1999 Sep; 12(9):803-12. PubMed ID: 10494632 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]