These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
324 related articles for article (PubMed ID: 9169017)
1. The mechanism of apolipoprotein B-100 thiol depletion during oxidative modification of low-density lipoprotein. Ferguson E; Singh RJ; Hogg N; Kalyanaraman B Arch Biochem Biophys; 1997 May; 341(2):287-94. PubMed ID: 9169017 [TBL] [Abstract][Full Text] [Related]
2. Secondary radicals derived from chloramines of apolipoprotein B-100 contribute to HOCl-induced lipid peroxidation of low-density lipoproteins. Hazell LJ; Davies MJ; Stocker R Biochem J; 1999 May; 339 ( Pt 3)(Pt 3):489-95. PubMed ID: 10215584 [TBL] [Abstract][Full Text] [Related]
3. Oxidation and antioxidation of human low-density lipoprotein and plasma exposed to 3-morpholinosydnonimine and reagent peroxynitrite. Thomas SR; Davies MJ; Stocker R Chem Res Toxicol; 1998 May; 11(5):484-94. PubMed ID: 9585479 [TBL] [Abstract][Full Text] [Related]
4. Direct evidence for apo B-100-mediated copper reduction: studies with purified apo B-100 and detection of tryptophanyl radicals. Batthyány C; Santos CX; Botti H; Cerveñansky C; Radi R; Augusto O; Rubbo H Arch Biochem Biophys; 2000 Dec; 384(2):335-40. PubMed ID: 11368321 [TBL] [Abstract][Full Text] [Related]
5. Spin-labeling study of the oxidative damage to low-density lipoprotein. Singh RJ; Feix JB; Mchaourab HS; Hogg N; Kalyanaraman B Arch Biochem Biophys; 1995 Jun; 320(1):155-61. PubMed ID: 7793976 [TBL] [Abstract][Full Text] [Related]
6. Site-specific trapping of reactive species in low-density lipoprotein oxidation: biological implications. Kalyanaraman B; Joseph J; Parthasarathy S Biochim Biophys Acta; 1993 Jun; 1168(2):220-7. PubMed ID: 8389205 [TBL] [Abstract][Full Text] [Related]
7. A critical overview of the chemistry of copper-dependent low density lipoprotein oxidation: roles of lipid hydroperoxides, alpha-tocopherol, thiols, and ceruloplasmin. Burkitt MJ Arch Biochem Biophys; 2001 Oct; 394(1):117-35. PubMed ID: 11566034 [TBL] [Abstract][Full Text] [Related]
8. Apolipoprotein B carbonyl formation is enhanced by lipid peroxidation during copper-mediated oxidation of human low-density lipoproteins. Yan LJ; Lodge JK; Traber MG; Packer L Arch Biochem Biophys; 1997 Mar; 339(1):165-71. PubMed ID: 9056246 [TBL] [Abstract][Full Text] [Related]
9. The mechanism of kinetic inhibition of Cu(II)-induced oxidation of low density lipoprotein by lanthanide ions. Liu H; Cheng Y; Lu J; Li R; Wang K J Inorg Biochem; 2006 Jul; 100(7):1280-9. PubMed ID: 16678267 [TBL] [Abstract][Full Text] [Related]
10. Hemoglobin induced apolipoprotein B crosslinking in low-density lipoprotein peroxidation. Miller YI; Felikman Y; Shaklai N Arch Biochem Biophys; 1996 Feb; 326(2):252-60. PubMed ID: 8611031 [TBL] [Abstract][Full Text] [Related]
11. Nitrone spin trap lipophilicity as a determinant for inhibition of low density lipoprotein oxidation and activation of interleukin-1 beta release from human monocytes. Thomas CE; Ku G; Kalyanaraman B J Lipid Res; 1994 Apr; 35(4):610-9. PubMed ID: 8006515 [TBL] [Abstract][Full Text] [Related]
12. Paradoxical protective effect of aminoguanidine toward low-density lipoprotein oxidation: inhibition of apolipoprotein B fragmentation without preventing its carbonylation. Mechanism of action of aminoguanidine. Jedidi I; Thérond P; Zarev S; Cosson C; Couturier M; Massot C; Jore D; Gardès-Albert M; Legrand A; Bonnefont-Rousselot D Biochemistry; 2003 Sep; 42(38):11356-65. PubMed ID: 14503886 [TBL] [Abstract][Full Text] [Related]
13. Structural aspects of thiol-specific spin labeling of human plasma low density lipoprotein. Kveder M; Pifat G; Vukelić B; Pecar S; Schara M Biopolymers; 2000; 57(6):336-43. PubMed ID: 11054653 [TBL] [Abstract][Full Text] [Related]
14. The spin trap, alpha-phenyl N-tert-butylnitrone, inhibits the oxidative modification of low density lipoprotein. Kalyanaraman B; Joseph J; Parthasarathy S FEBS Lett; 1991 Mar; 280(1):17-20. PubMed ID: 1849092 [TBL] [Abstract][Full Text] [Related]
15. Comparative time-courses of copper-ion-mediated protein and lipid oxidation in low-density lipoprotein. Knott HM; Baoutina A; Davies MJ; Dean RT Arch Biochem Biophys; 2002 Apr; 400(2):223-32. PubMed ID: 12054433 [TBL] [Abstract][Full Text] [Related]
16. Multiple mechanisms for inhibition of low density lipoprotein oxidation by novel cyclic nitrone spin traps. Thomas CE; Ohlweiler DF; Kalyanaraman B J Biol Chem; 1994 Nov; 269(45):28055-61. PubMed ID: 7961741 [TBL] [Abstract][Full Text] [Related]
17. Contribution of superoxide to reduced antioxidant activity of glycoxidative serum albumin. Sakata N; Moh A; Takebayashi S Heart Vessels; 2002 Nov; 17(1):22-9. PubMed ID: 12434198 [TBL] [Abstract][Full Text] [Related]
18. Oxidative and malondialdehyde modification of low-density lipoprotein: a comparative study. Chen Y; Zhou M; Liu S; Ding Z; Lou N; Pang Z; Wan J Br J Biomed Sci; 1997 Sep; 54(3):159-65. PubMed ID: 9499592 [TBL] [Abstract][Full Text] [Related]
19. Absence of an effect of vitamin E on protein and lipid radical formation during lipoperoxidation of LDL by lipoxygenase. Ganini D; Mason RP Free Radic Biol Med; 2014 Nov; 76():61-8. PubMed ID: 25091900 [TBL] [Abstract][Full Text] [Related]
20. Dietary iron concentration alters LDL oxidatively. The effect of antioxidants. van Jaarsveld H; Pool GF; Barnard HC Res Commun Mol Pathol Pharmacol; 1998 Jan; 99(1):69-80. PubMed ID: 9523356 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]