BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 9169017)

  • 1. The mechanism of apolipoprotein B-100 thiol depletion during oxidative modification of low-density lipoprotein.
    Ferguson E; Singh RJ; Hogg N; Kalyanaraman B
    Arch Biochem Biophys; 1997 May; 341(2):287-94. PubMed ID: 9169017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secondary radicals derived from chloramines of apolipoprotein B-100 contribute to HOCl-induced lipid peroxidation of low-density lipoproteins.
    Hazell LJ; Davies MJ; Stocker R
    Biochem J; 1999 May; 339 ( Pt 3)(Pt 3):489-95. PubMed ID: 10215584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation and antioxidation of human low-density lipoprotein and plasma exposed to 3-morpholinosydnonimine and reagent peroxynitrite.
    Thomas SR; Davies MJ; Stocker R
    Chem Res Toxicol; 1998 May; 11(5):484-94. PubMed ID: 9585479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct evidence for apo B-100-mediated copper reduction: studies with purified apo B-100 and detection of tryptophanyl radicals.
    Batthyány C; Santos CX; Botti H; Cerveñansky C; Radi R; Augusto O; Rubbo H
    Arch Biochem Biophys; 2000 Dec; 384(2):335-40. PubMed ID: 11368321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spin-labeling study of the oxidative damage to low-density lipoprotein.
    Singh RJ; Feix JB; Mchaourab HS; Hogg N; Kalyanaraman B
    Arch Biochem Biophys; 1995 Jun; 320(1):155-61. PubMed ID: 7793976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-specific trapping of reactive species in low-density lipoprotein oxidation: biological implications.
    Kalyanaraman B; Joseph J; Parthasarathy S
    Biochim Biophys Acta; 1993 Jun; 1168(2):220-7. PubMed ID: 8389205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A critical overview of the chemistry of copper-dependent low density lipoprotein oxidation: roles of lipid hydroperoxides, alpha-tocopherol, thiols, and ceruloplasmin.
    Burkitt MJ
    Arch Biochem Biophys; 2001 Oct; 394(1):117-35. PubMed ID: 11566034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apolipoprotein B carbonyl formation is enhanced by lipid peroxidation during copper-mediated oxidation of human low-density lipoproteins.
    Yan LJ; Lodge JK; Traber MG; Packer L
    Arch Biochem Biophys; 1997 Mar; 339(1):165-71. PubMed ID: 9056246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism of kinetic inhibition of Cu(II)-induced oxidation of low density lipoprotein by lanthanide ions.
    Liu H; Cheng Y; Lu J; Li R; Wang K
    J Inorg Biochem; 2006 Jul; 100(7):1280-9. PubMed ID: 16678267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemoglobin induced apolipoprotein B crosslinking in low-density lipoprotein peroxidation.
    Miller YI; Felikman Y; Shaklai N
    Arch Biochem Biophys; 1996 Feb; 326(2):252-60. PubMed ID: 8611031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrone spin trap lipophilicity as a determinant for inhibition of low density lipoprotein oxidation and activation of interleukin-1 beta release from human monocytes.
    Thomas CE; Ku G; Kalyanaraman B
    J Lipid Res; 1994 Apr; 35(4):610-9. PubMed ID: 8006515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paradoxical protective effect of aminoguanidine toward low-density lipoprotein oxidation: inhibition of apolipoprotein B fragmentation without preventing its carbonylation. Mechanism of action of aminoguanidine.
    Jedidi I; Thérond P; Zarev S; Cosson C; Couturier M; Massot C; Jore D; Gardès-Albert M; Legrand A; Bonnefont-Rousselot D
    Biochemistry; 2003 Sep; 42(38):11356-65. PubMed ID: 14503886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural aspects of thiol-specific spin labeling of human plasma low density lipoprotein.
    Kveder M; Pifat G; Vukelić B; Pecar S; Schara M
    Biopolymers; 2000; 57(6):336-43. PubMed ID: 11054653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The spin trap, alpha-phenyl N-tert-butylnitrone, inhibits the oxidative modification of low density lipoprotein.
    Kalyanaraman B; Joseph J; Parthasarathy S
    FEBS Lett; 1991 Mar; 280(1):17-20. PubMed ID: 1849092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative time-courses of copper-ion-mediated protein and lipid oxidation in low-density lipoprotein.
    Knott HM; Baoutina A; Davies MJ; Dean RT
    Arch Biochem Biophys; 2002 Apr; 400(2):223-32. PubMed ID: 12054433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple mechanisms for inhibition of low density lipoprotein oxidation by novel cyclic nitrone spin traps.
    Thomas CE; Ohlweiler DF; Kalyanaraman B
    J Biol Chem; 1994 Nov; 269(45):28055-61. PubMed ID: 7961741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of superoxide to reduced antioxidant activity of glycoxidative serum albumin.
    Sakata N; Moh A; Takebayashi S
    Heart Vessels; 2002 Nov; 17(1):22-9. PubMed ID: 12434198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative and malondialdehyde modification of low-density lipoprotein: a comparative study.
    Chen Y; Zhou M; Liu S; Ding Z; Lou N; Pang Z; Wan J
    Br J Biomed Sci; 1997 Sep; 54(3):159-65. PubMed ID: 9499592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absence of an effect of vitamin E on protein and lipid radical formation during lipoperoxidation of LDL by lipoxygenase.
    Ganini D; Mason RP
    Free Radic Biol Med; 2014 Nov; 76():61-8. PubMed ID: 25091900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dietary iron concentration alters LDL oxidatively. The effect of antioxidants.
    van Jaarsveld H; Pool GF; Barnard HC
    Res Commun Mol Pathol Pharmacol; 1998 Jan; 99(1):69-80. PubMed ID: 9523356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.