These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 916916)

  • 21. [Character of distribution of sulphate-reducing and thionic bacteria in silts of Balkhash Lake].
    Novozhilova MI; Berezina FS
    Mikrobiologiia; 1968; 37(3):534-9. PubMed ID: 5733253
    [No Abstract]   [Full Text] [Related]  

  • 22. [Specifics of the soil microflora in the Primor'e rice fields].
    Shchapova LN
    Mikrobiologiia; 1971; 40(4):702-6. PubMed ID: 5096616
    [No Abstract]   [Full Text] [Related]  

  • 23. Bioremediation of heavy metal-contaminated soils by sulfate-reducing bacteria.
    Jiang W; Fan W
    Ann N Y Acad Sci; 2008 Oct; 1140():446-54. PubMed ID: 18991946
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxidation of elemental sulfur by bacteria and fungi in soil.
    Czaban J; Kobus J
    Acta Microbiol Pol; 2000; 49(2):135-47. PubMed ID: 11093676
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Microorganisms in heat supply lines and internal corrosion of steel pipes].
    Rozanova EP; Dubinina GA; Lebedeva EV; Suntsova LA; Lipovskikh VM; Tsvetkov NN
    Mikrobiologiia; 2003; 72(2):212-20. PubMed ID: 12751246
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Sulfur and iron cycling bacteria in low-sulfate meromictic Lake Kuznechikha].
    Gorlenko VM; Vainshtein MB; Chebotarev EN
    Mikrobiologiia; 1980; 49(5):804-12. PubMed ID: 6777648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contributions of fermentative acidogenic bacteria and sulfate-reducing bacteria to lactate degradation and sulfate reduction.
    Zhao Y; Ren N; Wang A
    Chemosphere; 2008 May; 72(2):233-42. PubMed ID: 18331751
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Long-term sustainability of a high-energy, low-diversity crustal biome.
    Lin LH; Wang PL; Rumble D; Lippmann-Pipke J; Boice E; Pratt LM; Sherwood Lollar B; Brodie EL; Hazen TC; Andersen GL; DeSantis TZ; Moser DP; Kershaw D; Onstott TC
    Science; 2006 Oct; 314(5798):479-82. PubMed ID: 17053150
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Biogenic elements and sulfate reduction in a flooded oil carbonate stratum].
    Rozanova EP; Bykov VN; Baldina AL; Kosogorova TA
    Mikrobiologiia; 1976; 45(2):365-9. PubMed ID: 933888
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sulfate-reducing bacteria in marine sediment (Aarhus Bay, Denmark): abundance and diversity related to geochemical zonation.
    Leloup J; Fossing H; Kohls K; Holmkvist L; Borowski C; Jørgensen BB
    Environ Microbiol; 2009 May; 11(5):1278-91. PubMed ID: 19220398
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Biological oxidation of iron and manganese].
    Brantner H
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1970; 124(5):412-26. PubMed ID: 5535929
    [No Abstract]   [Full Text] [Related]  

  • 32. [Anaerobic methane oxidation and sulfate reduction in bacterial mats of coral-like carbonate structures in the Black Sea].
    Pimenov NV; Ivanova AE
    Mikrobiologiia; 2005; 74(3):420-9. PubMed ID: 16119857
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of heavy metals on methane production in tropical rice soils.
    Mishra SR; Bharati K; Sethunathan N; Adhya TK
    Ecotoxicol Environ Saf; 1999 Sep; 44(1):129-36. PubMed ID: 10499999
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bacteria, not archaea, restore nitrification in a zinc-contaminated soil.
    Mertens J; Broos K; Wakelin SA; Kowalchuk GA; Springael D; Smolders E
    ISME J; 2009 Aug; 3(8):916-23. PubMed ID: 19387487
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Sulfate reduction in watered carbonate petroleum collectors].
    Rozanova EP; Bykov VN; Baldina AL; Kosogorova TA
    Mikrobiologiia; 1973; 42(2):347-53. PubMed ID: 4769923
    [No Abstract]   [Full Text] [Related]  

  • 36. Molecular analysis of bacterial community structures in paddy soils for environmental risk assessment with two varieties of genetically modified rice, Iksan 483 and Milyang 204.
    Kim MC; Ahn JH; Shin HC; Kim T; Ryu TH; Kim DH; Song HG; Lee GH; Ka JO
    J Microbiol Biotechnol; 2008 Feb; 18(2):207-18. PubMed ID: 18309263
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Manganese-oxidizing bacteria. I. Isolation and identification of various manganese-oxidizing bacteria].
    Schweisfurth R
    Z Allg Mikrobiol; 1973; 13(4):341-7. PubMed ID: 4771702
    [No Abstract]   [Full Text] [Related]  

  • 38. [Anti-corrosive effect of pesticides in soil corrosion conditions].
    Smykun NV; Tretiak AP; Kurmakova IN
    Mikrobiol Z; 2001; 63(4):85-90. PubMed ID: 11692682
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis.
    Gittel A; Mussmann M; Sass H; Cypionka H; Könneke M
    Environ Microbiol; 2008 Oct; 10(10):2645-58. PubMed ID: 18627412
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiple-variant design for the enrichment of photosynthetic bacterial populations.
    Jeffries TW; Butler RG
    Can J Microbiol; 1975 Jul; 21(7):0146-54. PubMed ID: 1097075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.