These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 9169221)

  • 1. A robust method for estimating cross-relaxation rates from simultaneous fits to build-up and decay curves.
    Najfeld I; Dayie KT; Wagner G; Havel TF
    J Magn Reson; 1997 Feb; 124(2):372-82. PubMed ID: 9169221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved estimation of CSA-dipolar coupling cross-correlation rates from laboratory-frame relaxation experiments.
    Ghose R; Prestegard JH
    J Magn Reson; 1998 Oct; 134(2):308-14. PubMed ID: 9867423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct simulation of magnetic resonance relaxation rates and line shapes from molecular trajectories.
    Rangel DP; Baveye PC; Robinson BH
    J Phys Chem B; 2012 Jun; 116(22):6233-49. PubMed ID: 22540276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unusual lack of internal mobility and fast overall tumbling in oxidized flavodoxin from Anacystis nidulans.
    Zhang P; Dayie KT; Wagner G
    J Mol Biol; 1997 Sep; 272(3):443-55. PubMed ID: 9325102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating quadrupole couplings of amide deuterons in proteins from direct measurements of 2H spin relaxation rates.
    Sheppard D; Tugarinov V
    J Magn Reson; 2010 Apr; 203(2):316-22. PubMed ID: 20053572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An iterative fitting procedure for the determination of longitudinal NMR cross-correlation rates.
    Wang L; Kurochkin AV; Zuiderweg ER
    J Magn Reson; 2000 May; 144(1):175-85. PubMed ID: 10783290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tryptophan sidechain dynamics in hydrophobic oligopeptides determined by use of 13C nuclear magnetic resonance spectroscopy.
    Weaver AJ; Kemple MD; Prendergast FG
    Biophys J; 1988 Jul; 54(1):1-15. PubMed ID: 3416021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of cross correlation between dipolar coupling and chemical shift anisotropy in the spin relaxation of 13C, 15N-labeled proteins.
    Ghose R; Huang K; Prestegard JH
    J Magn Reson; 1998 Dec; 135(2):487-99. PubMed ID: 9878476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of duty-cycle heating compensation in NMR spin relaxation experiments.
    Yip GN; Zuiderweg ER
    J Magn Reson; 2005 Oct; 176(2):171-8. PubMed ID: 16009587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of the maximum likelihood principle to separate exponential terms in T2 relaxation of nuclear magnetic resonance.
    Sandor T; Bleier AR; Ruenzel PW; Adams DF; Jolesz FA
    Magn Reson Imaging; 1988; 6(1):27-40. PubMed ID: 3352478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping of collision frequencies for stearic acid spin labels by saturation-recovery electron paramagnetic resonance.
    Yin JJ; Feix JB; Hyde JS
    Biophys J; 1990 Sep; 58(3):713-20. PubMed ID: 2169919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR relaxation interference effects and internal dynamics in gamma-cyclodextrin.
    Ghalebani L; Kotsyubynskyy D; Kowalewski J
    J Magn Reson; 2008 Nov; 195(1):1-8. PubMed ID: 18760946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uniform-penalty inversion of multiexponential decay data. II. Data spacing, T(2) data, systemic data errors, and diagnostics.
    Borgia GC; Brown RJ; Fantazzini P
    J Magn Reson; 2000 Dec; 147(2):273-85. PubMed ID: 11097819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low microwave-amplitude ESR spectroscopy: measuring spin-relaxation interactions of moderately immobilized spin labels in proteins.
    Hedin EM; Hult K; Mouritsen OG; Høyrup P
    J Biochem Biophys Methods; 2004 Aug; 60(2):117-38. PubMed ID: 15262447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High resolution NMR spectroscopy using a recursive algorithm.
    Nishiyama K; Mita T
    IEEE Trans Biomed Eng; 1989 Feb; 36(2):222-31. PubMed ID: 2917767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropy of the proton T1 and the low-field relaxation in NH4 ClO4 below 20K.
    Birczyn'ski A; Lalowicz ZT; Olejniczak Z; Punkkinen M
    Solid State Nucl Magn Reson; 1996 Nov; 7(2):105-19. PubMed ID: 8986023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Internal mobility of the basic pancreatic trypsin inhibitor in solution: a comparison of NMR spin relaxation measurements and molecular dynamics simulations.
    Smith PE; van Schaik RC; Szyperski T; Wüthrich K; van Gunsteren WF
    J Mol Biol; 1995 Feb; 246(2):356-65. PubMed ID: 7532721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nuclear magnetic resonance relaxation data analysis in solids: general R1/R1(ρ) equations and the model-free approach.
    Kurbanov R; Zinkevich T; Krushelnitsky A
    J Chem Phys; 2011 Nov; 135(18):184104. PubMed ID: 22088049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manifestations of slow site exchange processes in solution NMR: a continuous Gaussian exchange model.
    Schurr JM; Fujimoto BS; Diaz R; Robinson BH
    J Magn Reson; 1999 Oct; 140(2):404-31. PubMed ID: 10497047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate measurement of longitudinal cross-relaxation rates in nuclear magnetic resonance.
    Pelupessy P; Ferrage F; Bodenhausen G
    J Chem Phys; 2007 Apr; 126(13):134508. PubMed ID: 17430048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.