BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 9169555)

  • 1. Relationships between genomic G+C content, RNA secondary structures, and optimal growth temperature in prokaryotes.
    Galtier N; Lobry JR
    J Mol Evol; 1997 Jun; 44(6):632-6. PubMed ID: 9169555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlations between genomic GC levels and optimal growth temperatures in prokaryotes.
    Musto H; Naya H; Zavala A; Romero H; Alvarez-Valín F; Bernardi G
    FEBS Lett; 2004 Aug; 573(1-3):73-7. PubMed ID: 15327978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for strong selective constraint acting on the nucleotide composition of 16S ribosomal RNA genes.
    Wang HC; Hickey DA
    Nucleic Acids Res; 2002 Jun; 30(11):2501-7. PubMed ID: 12034839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High guanine-cytosine content is not an adaptation to high temperature: a comparative analysis amongst prokaryotes.
    Hurst LD; Merchant AR
    Proc Biol Sci; 2001 Mar; 268(1466):493-7. PubMed ID: 11296861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimum growth temperature and the base composition of open reading frames in prokaryotes.
    Lambros RJ; Mortimer JR; Forsdyke DR
    Extremophiles; 2003 Dec; 7(6):443-50. PubMed ID: 14666404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A positive correlation between GC content and growth temperature in prokaryotes.
    Hu EZ; Lan XR; Liu ZL; Gao J; Niu DK
    BMC Genomics; 2022 Feb; 23(1):110. PubMed ID: 35139824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the correlation between genomic G+C content and optimal growth temperature in prokaryotes: data quality and confounding factors.
    Wang HC; Susko E; Roger AJ
    Biochem Biophys Res Commun; 2006 Apr; 342(3):681-4. PubMed ID: 16499870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revisiting the Relationships Between Genomic G + C Content, RNA Secondary Structures, and Optimal Growth Temperature.
    Meyer MM
    J Mol Evol; 2021 Apr; 89(3):165-171. PubMed ID: 33216148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compositional properties and thermal adaptation of SRP-RNA in bacteria and archaea.
    Miralles F
    J Mol Evol; 2010 Feb; 70(2):181-9. PubMed ID: 20069286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the origin of genomic adaptation at high temperature for prokaryotic organisms.
    Basak S; Ghosh TC
    Biochem Biophys Res Commun; 2005 May; 330(3):629-32. PubMed ID: 15809043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlations between genomic GC levels and optimal growth temperatures are not 'robust'.
    Marashi SA; Ghalanbor Z
    Biochem Biophys Res Commun; 2004 Dec; 325(2):381-3. PubMed ID: 15530402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uracil content of 16S rRNA of thermophilic and psychrophilic prokaryotes correlates inversely with their optimal growth temperatures.
    Khachane AN; Timmis KN; dos Santos VA
    Nucleic Acids Res; 2005; 33(13):4016-22. PubMed ID: 16030352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extended secondary structure in 5S rRNAs from a sulphur metabolizing archaebacterium, Thermococcus celer.
    McDougall J; Nazar RN
    Biochem Biophys Res Commun; 1986 Feb; 134(3):1167-74. PubMed ID: 2418833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilization against hyperthermal denaturation through increased CG content can explain the discrepancy between whole genome and 16S rRNA analyses.
    Meyer TE; Bansal AK
    Biochemistry; 2005 Aug; 44(34):11458-65. PubMed ID: 16114882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of mutational bias and natural selection on genome-wide nucleotide bias in prokaryotic organisms.
    Banerjee T; Gupta SK; Ghosh TC
    Biosystems; 2005 Jul; 81(1):11-8. PubMed ID: 15917123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic GC level, optimal growth temperature, and genome size in prokaryotes.
    Musto H; Naya H; Zavala A; Romero H; Alvarez-Valín F; Bernardi G
    Biochem Biophys Res Commun; 2006 Aug; 347(1):1-3. PubMed ID: 16815305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene-centric association analysis for the correlation between the guanine-cytosine content levels and temperature range conditions of prokaryotic species.
    Zheng H; Wu H
    BMC Bioinformatics; 2010 Dec; 11 Suppl 11(Suppl 11):S7. PubMed ID: 21172057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correspondence analysis of amino acid usage within the family Bacillaceae.
    Naya H; Zavala A; Romero H; Rodríguez-Maseda H; Musto H
    Biochem Biophys Res Commun; 2004 Dec; 325(4):1252-7. PubMed ID: 15555561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleotide sequence, secondary structure and evolution of the 5S ribosomal RNA from five bacterial species.
    Vandenberghe A; Wassink A; Raeymaekers P; De Baere R; Huysmans E; De Wachter R
    Eur J Biochem; 1985 Jun; 149(3):537-42. PubMed ID: 2408888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organization and expression of the 16S, 23S and 5S ribosomal RNA genes from the archaebacterium Thermoplasma acidophilum.
    Ree HK; Zimmermann RA
    Nucleic Acids Res; 1990 Aug; 18(15):4471-8. PubMed ID: 1697064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.