BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 9169555)

  • 21. Computational modeling analyses of RNA secondary structures and phylogenetic inference of evolutionary conserved 5S rRNA in the prokaryotes.
    Singh V; Somvanshi P
    J Mol Graph Model; 2009 Apr; 27(7):770-6. PubMed ID: 19217331
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimation of prokaryote genomic DNA G+C content by sequencing universally conserved genes.
    Fournier PE; Suhre K; Fournous G; Raoult D
    Int J Syst Evol Microbiol; 2006 May; 56(Pt 5):1025-1029. PubMed ID: 16627649
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Secondary structural elements exclusive to the sequences flanking ribosomal RNAs lend support to the monophyletic nature of the archaebacteria.
    Kjems J; Garrett RA
    J Mol Evol; 1990 Jul; 31(1):25-32. PubMed ID: 1696321
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conserved unpaired adenine residues are important for ordered structures of 5S ribosomal RNA. An infrared study of the secondary and tertiary structure of Thermus thermophilus 5S rRNA.
    Böhm S; Venyaminov SYu ; Fabian H; Filimonov VV; Welfle H
    Eur J Biochem; 1985 Mar; 147(3):503-10. PubMed ID: 2579810
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Growth temperatures of archaeal communities can be estimated from the guanine-plus-cytosine contents of 16S rRNA gene fragments.
    Kimura H; Mori K; Yamanaka T; Ishibashi J
    Environ Microbiol Rep; 2013 Jun; 5(3):468-74. PubMed ID: 23754727
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The 3'-terminal region of bacterial 23S ribosomal RNA: structure and homology with the 3'-terminal region of eukaryotic 28S rRNA and with chloroplast 4.5s rRNA.
    Machatt MA; Ebel JP; Branlant C
    Nucleic Acids Res; 1981 Apr; 9(7):1533-49. PubMed ID: 6164989
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The 5S rRNA loop E: chemical probing and phylogenetic data versus crystal structure.
    Leontis NB; Westhof E
    RNA; 1998 Sep; 4(9):1134-53. PubMed ID: 9740131
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of tRNA composition and folding in psychrophilic, mesophilic and thermophilic genomes: indications for thermal adaptation.
    Dutta A; Chaudhuri K
    FEMS Microbiol Lett; 2010 Apr; 305(2):100-8. PubMed ID: 20659165
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular evolution of 5S RNA.
    Hori H
    Mol Gen Genet; 1976 May; 145(2):119-23. PubMed ID: 934049
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genomic adaptation of prokaryotic organisms at high temperature.
    Basak S; Mukhopadhyay P; Gupta SK; Ghosh TC
    Bioinformation; 2010 Feb; 4(8):352-6. PubMed ID: 20975899
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physicochemical characterization of the ribosomal RNA species of the Mollusca. Molecular weight, integrity and secondary-structure features of the RNA of the large and small ribosomal subunits.
    Cammarano P; Londei P; Mazzei F; Felsani A
    Biochem J; 1980 Aug; 189(2):313-35. PubMed ID: 7458915
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Organization and nucleotide sequence analysis of a ribosomal RNA gene cluster from Streptomyces ambofaciens.
    Pernodet JL; Boccard F; Alegre MT; Gagnat J; Guérineau M
    Gene; 1989 Jun; 79(1):33-46. PubMed ID: 2777089
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Generalized structures of the 5S ribosomal RNAs.
    Delihas N; Andersen J
    Nucleic Acids Res; 1982 Nov; 10(22):7323-44. PubMed ID: 7155895
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A nonhyperthermophilic common ancestor to extant life forms.
    Galtier N; Tourasse N; Gouy M
    Science; 1999 Jan; 283(5399):220-1. PubMed ID: 9880254
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gene organization, transcription signals and processing of the single ribosomal RNA operon of the archaebacterium Thermoproteus tenax.
    Kjems J; Leffers H; Garrett RA; Wich G; Leinfelder W; Böck A
    Nucleic Acids Res; 1987 Jun; 15(12):4821-35. PubMed ID: 2439991
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The correlation between genomic G+C and optimal growth temperature of prokaryotes is robust: a reply to Marashi and Ghalanbor.
    Musto H; Naya H; Zavala A; Romero H; Alvarez-Valin F; Bernardi G
    Biochem Biophys Res Commun; 2005 May; 330(2):357-60. PubMed ID: 15796890
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reconstruction of ancestral 16S rRNA reveals mutation bias in the evolution of optimal growth temperature in the Thermotogae phylum.
    Green AG; Swithers KS; Gogarten JF; Gogarten JP
    Mol Biol Evol; 2013 Nov; 30(11):2463-74. PubMed ID: 23966548
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sequences downstream of the start codon and their relations to G + C content and optimal growth temperature in prokaryotic genomes.
    Li W; Zou H; Tao M
    Antonie Van Leeuwenhoek; 2007 Nov; 92(4):417-27. PubMed ID: 17562217
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Complete DNA sequence coding for the large ribosomal RNA of yeast mitochondria.
    Sor F; Fukuhara H
    Nucleic Acids Res; 1983 Jan; 11(2):339-48. PubMed ID: 6298722
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Environmental shaping of ribosomal RNA nucleotide composition.
    Rudi K
    Microb Ecol; 2009 Apr; 57(3):469-77. PubMed ID: 18825450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.