BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

431 related articles for article (PubMed ID: 9169584)

  • 1. Roles of rDNA spacer and transcription unit-sequences in X-Y meiotic chromosome pairing in Drosophila melanogaster males.
    Ren X; Eisenhour L; Hong C; Lee Y; McKee BD
    Chromosoma; 1997 Jun; 106(1):29-36. PubMed ID: 9169584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promoter-containing ribosomal DNA fragments function as X-Y meiotic pairing sites in D. melanogaster males.
    Merrill CJ; Chakravarti D; Habera L; Das S; Eisenhour L; McKee BD
    Dev Genet; 1992; 13(6):468-84. PubMed ID: 1304425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence that intergenic spacer repeats of Drosophila melanogaster rRNA genes function as X-Y pairing sites in male meiosis, and a general model for achiasmatic pairing.
    McKee BD; Habera L; Vrana JA
    Genetics; 1992 Oct; 132(2):529-44. PubMed ID: 1330825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Male sterility and meiotic drive associated with sex chromosome rearrangements in Drosophila. Role of X-Y pairing.
    McKee BD; Wilhelm K; Merrill C; Ren X
    Genetics; 1998 May; 149(1):143-55. PubMed ID: 9584092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drosophila ribosomal RNA genes function as an X-Y pairing site during male meiosis.
    McKee BD; Karpen GH
    Cell; 1990 Apr; 61(1):61-72. PubMed ID: 2156630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromosomal position effects reveal different cis-acting requirements for rDNA transcription and sex chromosome pairing in Drosophila melanogaster.
    Briscoe A; Tomkiel JE
    Genetics; 2000 Jul; 155(3):1195-211. PubMed ID: 10880481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the roles of heterochromatin and euchromatin in meiosis in drosophila: mapping chromosomal pairing sites and testing candidate mutations for effects on X-Y nondisjunction and meiotic drive in male meiosis.
    McKee BD; Hong CS; Das S
    Genetica; 2000; 109(1-2):77-93. PubMed ID: 11293799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The license to pair: identification of meiotic pairing sites in Drosophila.
    McKee BD
    Chromosoma; 1996 Sep; 105(3):135-41. PubMed ID: 8781181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The centric region of the X chromosome rDNA functions in male meiotic pairing in Drosophila melanogaster.
    Park HS; Yamamoto MT
    Chromosoma; 1995 Jul; 103(10):700-7. PubMed ID: 7664617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterns of variation in the intergenic spacers of ribosomal DNA in Drosophila melanogaster support a model for genetic exchanges during X-Y pairing.
    Polanco C; González AI; Dover GA
    Genetics; 2000 Jul; 155(3):1221-9. PubMed ID: 10880483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced rDNA copy number does not affect "competitive" chromosome pairing in XYY males of Drosophila melanogaster.
    Maggert KA
    G3 (Bethesda); 2014 Mar; 4(3):497-507. PubMed ID: 24449686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sex Chromosome Pairing Mediated by Euchromatic Homology in
    Hylton CA; Hansen K; Bourgeois A; Tomkiel Dean JE
    Genetics; 2020 Mar; 214(3):605-616. PubMed ID: 31915134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multigene family of ribosomal DNA in Drosophila melanogaster reveals contrasting patterns of homogenization for IGS and ITS spacer regions. A possible mechanism to resolve this paradox.
    Polanco C; González AI; de la Fuente ; Dover GA
    Genetics; 1998 May; 149(1):243-56. PubMed ID: 9584100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An unusual Y chromosome of Drosophila simulans carrying amplified rDNA spacer without rRNA genes.
    Lohe AR; Roberts PA
    Genetics; 1990 Jun; 125(2):399-406. PubMed ID: 2379820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translocation of Y-linked genes to the dot chromosome in Drosophila pseudoobscura.
    Larracuente AM; Noor MA; Clark AG
    Mol Biol Evol; 2010 Jul; 27(7):1612-20. PubMed ID: 20147437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unusual structure of ribosomal DNA in the copepod Tigriopus californicus: intergenic spacer sequences lack internal subrepeats.
    Burton RS; Metz EC; Flowers JM; Willett CS
    Gene; 2005 Jan; 344():105-13. PubMed ID: 15656977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complex alterations of the ribosomal gene spacers in mutant sc8 of Drosophila melanogaster.
    Markova BA; Mironova RS; Grantcharova ML; Georgiev OG; Semionov EP
    Chromosoma; 1997 Nov; 106(6):361-8. PubMed ID: 9362544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary divergence of promoters and spacers in the rDNA family of four Drosophila species. Implications for molecular coevolution in multigene families.
    Tautz D; Tautz C; Webb D; Dover GA
    J Mol Biol; 1987 Jun; 195(3):525-42. PubMed ID: 3116264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure, molecular evolution and maintenance of copy number of extended repeated structures in the X-heterochromatin of Drosophila melanogaster.
    Nurminsky DI; Shevelyov YYa ; Nuzhdin SV; Gvozdev VA
    Chromosoma; 1994 Jul; 103(4):277-85. PubMed ID: 7988289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic evidence that nonhomologous disjunction and meiotic drive are properties of wild-type Drosophila melanogaster male meiosis.
    Boschi M; Belloni M; Robbins LG
    Genetics; 2006 Jan; 172(1):305-16. PubMed ID: 16219792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.