These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 916975)

  • 41. Reactive forms of oxygen and chemiluminescence in phagocytizing rabbit alveolar macrophages.
    Miles PR; Castranova V; Lee P
    Am J Physiol; 1978 Sep; 235(3):C103-8. PubMed ID: 211851
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of a monoclonal antibody to guinea pig peritoneal macrophages that inhibits phagocytosis of unopsonized zymosan: structural and functional similarities of the antigen to human and mouse CR3.
    Tamoto K; Tada M; Hazeki K; Kakinuma T; Mori Y
    Arch Biochem Biophys; 1989 May; 270(2):541-50. PubMed ID: 2468309
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Energy-dependent lysosomal wrapping mechanism (LWM) during autophagolysosome formation.
    Sakai M; Ogawa K
    Histochemistry; 1982; 76(4):479-88. PubMed ID: 7166511
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A role for MARCKS, the alpha isozyme of protein kinase C and myosin I in zymosan phagocytosis by macrophages.
    Allen LH; Aderem A
    J Exp Med; 1995 Sep; 182(3):829-40. PubMed ID: 7650489
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regulation of arachidonic acid metabolites in macrophages.
    Scott WA; Zrike JM; Hamill AL; Kempe J; Cohn ZA
    J Exp Med; 1980 Aug; 152(2):324-35. PubMed ID: 7400759
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fluoride as a pro-inflammatory factor and inhibitor of ATP bioavailability in differentiated human THP1 monocytic cells.
    Gutowska I; Baranowska-Bosiacka I; Baśkiewicz M; Milo B; Siennicka A; Marchlewicz M; Wiszniewska B; Machaliński B; Stachowska E
    Toxicol Lett; 2010 Jul; 196(2):74-9. PubMed ID: 20399260
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Potassium and amino acid transport in human leukocytes exposed to phagocytic stimuli.
    Dunham PB; Goldstein IM; Weissmann G
    J Cell Biol; 1974 Oct; 63(1):215-26. PubMed ID: 4424263
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A fluorescence technique to distinguish attached from ingested erythrocytes and zymosan particles in phagocytosing macrophages.
    Greenberg S; el Khoury J; Kaplan E; Silverstein SC
    J Immunol Methods; 1991 May; 139(1):115-22. PubMed ID: 2040809
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Impaired protein synthesis in erythroblasts enhances their phagocytosis by macrophages.
    Wiener E; Wickramasinghe SN
    Br J Haematol; 1983 Jan; 53(1):117-24. PubMed ID: 6848116
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chemiluminescence of macrophages depends upon their differentiation stage: dissociation between phagocytosis and oxygen radical release.
    D'Onofrio C; Lohmann-Matthes ML
    Immunobiology; 1984 Dec; 167(5):414-30. PubMed ID: 6526421
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Increased superoxide anion production by immunologically activated and chemically elicited macrophages.
    Johnston RB; Godzik CA; Cohn ZA
    J Exp Med; 1978 Jul; 148(1):115-27. PubMed ID: 209122
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Compartmentalization of PDE-4 and cAMP-dependent protein kinase in neutrophils and macrophages during phagocytosis.
    Pryzwansky KB; Kidao S; Merricks EP
    Cell Biochem Biophys; 1998; 28(2-3):251-75. PubMed ID: 9515168
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Studies of membrane receptors, phagocytosis, and morphology of subpopulations of rat lung interstitial macrophages.
    Chandler DB; Kennedy JI; Fulmer JD
    Am Rev Respir Dis; 1986 Sep; 134(3):542-7. PubMed ID: 3752710
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transmembrane potential changes during phagocytosis in rat alveolar macrophages.
    Miles PR; Bowman L; Castranova V
    J Cell Physiol; 1981 Jan; 106(1):109-17. PubMed ID: 6259182
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metabolic control of sodium transport in streptozotocin-induced diabetic rat hearts.
    Doliba NM; Babsky AM; Wehrli SL; Ivanics TM; Friedman MF; Osbakken MD
    Biochemistry (Mosc); 2000 Apr; 65(4):502-8. PubMed ID: 10810190
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Opsonophagocytosis versus lectinophagocytosis in human milk macrophages.
    Schroten H; Kuczera F; Köhler H; Adam R
    Adv Exp Med Biol; 2000; 478():95-107. PubMed ID: 11065063
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Effect of metabolic inhibitors on formed novocaine and neutral red segregation zones in frog erythrocytes].
    Veselkina MN; Bulychev AG; Braun AD
    Tsitologiia; 1985 Apr; 27(4):433-9. PubMed ID: 3159138
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Relationships between oxidative metabolism, macrophage activation, and antilisterial activity.
    Godfrey RW; Wilder MS
    J Leukoc Biol; 1984 Oct; 36(4):533-43. PubMed ID: 6090558
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Zymosan phagocytosis by mouse peritoneal macrophages is increased by apoHDL- and not by intact HDL-covered particles.
    Carvalho MD; Tobias VE; Vendrame CM; Shimabukuro AF; Gidlund M; Quintão EC
    Braz J Med Biol Res; 2000 Mar; 33(3):313-6. PubMed ID: 10719383
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Exoenzyme Tat-C3 inhibits association of zymosan particles, phagocytosis, adhesion, and complement binding in macrophage cells.
    Park J; Kim JS; Jung KC; Lee HJ; Kim JI; Kim J; Lee JY; Park JB; Choi SY
    Mol Cells; 2003 Oct; 16(2):216-23. PubMed ID: 14651264
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.