These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 9170243)
1. Regulation of phosphotransferases in glucose- and xylose-fermenting yeasts. Yang VW; Jeffries TW Appl Biochem Biotechnol; 1997; 63-65():97-108. PubMed ID: 9170243 [TBL] [Abstract][Full Text] [Related]
2. [Activity of the key enzymes in xylose-assimilating yeasts at different rates of oxygen transfer to the fermentation medium]. Iablochkova EN; Bolotnikova OI; Mikhaĭlova NP; Nemova NN; Ginak AI Mikrobiologiia; 2004; 73(2):163-8. PubMed ID: 15198025 [TBL] [Abstract][Full Text] [Related]
3. Candida shehatae--genetic diversity and phylogenetic relationships with other xylose-fermenting yeasts. Kurtzman CP Antonie Van Leeuwenhoek; 1990 May; 57(4):215-22. PubMed ID: 2353807 [TBL] [Abstract][Full Text] [Related]
4. Genetic improvement of native xylose-fermenting yeasts for ethanol production. Harner NK; Wen X; Bajwa PK; Austin GD; Ho CY; Habash MB; Trevors JT; Lee H J Ind Microbiol Biotechnol; 2015 Jan; 42(1):1-20. PubMed ID: 25404205 [TBL] [Abstract][Full Text] [Related]
5. Ethanolic fermentation of pentoses in lignocellulose hydrolysates. Hahn-Hägerdal B; Lindén T; Senac T; Skoog K Appl Biochem Biotechnol; 1991; 28-29():131-44. PubMed ID: 1929360 [TBL] [Abstract][Full Text] [Related]
6. Efficient simultaneous saccharification and fermentation of agricultural residues by Saccharomyces cerevisiae and Candida shehatae. The D-xylose fermenting yeast. Palnitkar SS; Lachke AH Appl Biochem Biotechnol; 1990 Nov; 26(2):151-8. PubMed ID: 2091527 [TBL] [Abstract][Full Text] [Related]
8. Long-term incomplete xylose fermentation, after glucose exhaustion, with Candida shehatae co-immobilized with Saccharomyces cerevisiae. Lebeau T; Jouenne T; Junter GA Microbiol Res; 2007; 162(3):211-8. PubMed ID: 16959480 [TBL] [Abstract][Full Text] [Related]
9. [Specific features of fermentation of D-xylose and D-glucose by xylose-assimilating yeasts]. Iablochkova EN; Bolotnikova OI; Mikhaĭlova NP; Nemova NN; Ginak AI Prikl Biokhim Mikrobiol; 2003; 39(3):302-6. PubMed ID: 12754827 [TBL] [Abstract][Full Text] [Related]
10. Xylulose fermentation by Saccharomyces cerevisiae and xylose-fermenting yeast strains. Yu S; Jeppsson H; Hahn-Hägerdal B Appl Microbiol Biotechnol; 1995 Dec; 44(3-4):314-20. PubMed ID: 8597536 [TBL] [Abstract][Full Text] [Related]
11. Xylulokinase activity in various yeasts including Saccharomyces cerevisiae containing the cloned xylulokinase gene. Scientific note. Deng XX; Ho NW Appl Biochem Biotechnol; 1990; 24-25():193-9. PubMed ID: 2162148 [TBL] [Abstract][Full Text] [Related]
12. Sequential incubation of Candida shehatae and ethanol-tolerant yeast cells for efficient ethanol production from a mixture of glucose, xylose and cellobiose. Guan D; Li Y; Shiroma R; Ike M; Tokuyasu K Bioresour Technol; 2013 Mar; 132():419-22. PubMed ID: 23280092 [TBL] [Abstract][Full Text] [Related]
13. Improved bioethanol production using fusants of Saccharomyces cerevisiae and xylose-fermenting yeasts. Kumari R; Pramanik K Appl Biochem Biotechnol; 2012 Jun; 167(4):873-84. PubMed ID: 22639357 [TBL] [Abstract][Full Text] [Related]
14. Oxygen starvation induces cell death in Candida shehatae fermentations of D-xylose, but not D-glucose. Kastner JR; Jones WJ; Roberts RS Appl Microbiol Biotechnol; 1999 Jun; 51(6):780-5. PubMed ID: 10422225 [TBL] [Abstract][Full Text] [Related]
15. The requirement of oxygen for incorporation of carbon from D-xylose and D-glucose by Pachysolen tannophilus. Neirinck LG; Maleszka R; Schneider H Arch Biochem Biophys; 1984 Jan; 228(1):13-21. PubMed ID: 6696428 [TBL] [Abstract][Full Text] [Related]
16. Alcoholic glucose and xylose fermentations by the coculture process: compatibility and typing of associated strains. Laplace JM; Delgenes JP; Moletta R; Navarro JM Can J Microbiol; 1992 Jul; 38(7):654-8. PubMed ID: 1393834 [TBL] [Abstract][Full Text] [Related]
17. [The activity of xylose reductase and xylitol dehydrogenase in yeasts]. Iablochkova EN; Bolotnikova OI; Mikhaĭlova NP; Nemova NN; Ginak AI Mikrobiologiia; 2003; 72(4):466-9. PubMed ID: 14526534 [TBL] [Abstract][Full Text] [Related]
18. Ethanogenic fermentation of co-cultures of Candida shehatae HM 52.2 and Saccharomyces cerevisiae ICV D254 in synthetic medium and rice hull hydrolysate. Hickert LR; da Cunha-Pereira F; de Souza-Cruz PB; Rosa CA; Ayub MA Bioresour Technol; 2013 Mar; 131():508-14. PubMed ID: 23391739 [TBL] [Abstract][Full Text] [Related]
19. Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Matsushika A; Inoue H; Murakami K; Takimura O; Sawayama S Bioresour Technol; 2009 Apr; 100(8):2392-8. PubMed ID: 19128960 [TBL] [Abstract][Full Text] [Related]
20. Kinetic modeling of Candida shehatae ATCC 22984 on xylose and glucose for ethanol production. Yuvadetkun P; Leksawasdi N; Boonmee M Prep Biochem Biotechnol; 2017 Mar; 47(3):268-275. PubMed ID: 27552485 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]