These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 9170243)
21. The ethanol tolerance of Pachysolen tannophilus in fermentation on xylose. Zhao L; Yu J; Zhang X; Tan T Appl Biochem Biotechnol; 2010 Jan; 160(2):378-85. PubMed ID: 18651246 [TBL] [Abstract][Full Text] [Related]
22. Metabolic pathway analysis of the xylose-metabolizing yeast protoplast fusant ZLYRHZ7. Ge J; Du R; Song G; Zhang Y; Ping W J Biosci Bioeng; 2017 Oct; 124(4):386-391. PubMed ID: 28527826 [TBL] [Abstract][Full Text] [Related]
23. Segregation of altered parental properties in fusions between Saccharomyces cerevisiae and the D-xylose fermenting yeasts Candida shehatae and Pichia stipitis. Gupthar AS Can J Microbiol; 1992 Dec; 38(12):1233-7. PubMed ID: 1288841 [TBL] [Abstract][Full Text] [Related]
24. Differential fructose effect in Pachysolen tannophilus and Pichia stipitis. Bicho PA; Cunningham JD; Lee H FEMS Microbiol Lett; 1989 Feb; 57(3):323-7. PubMed ID: 2656391 [TBL] [Abstract][Full Text] [Related]
25. Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters. Gonçalves DL; Matsushika A; de Sales BB; Goshima T; Bon EP; Stambuk BU Enzyme Microb Technol; 2014 Sep; 63():13-20. PubMed ID: 25039054 [TBL] [Abstract][Full Text] [Related]
26. [Transcript profile of converting xylose and glucose to ethanol by Candida shehatae]. Xiong X; Cai P; Xu Y; Yong Q; Yu S Wei Sheng Wu Xue Bao; 2013 Apr; 53(4):339-45. PubMed ID: 23858708 [TBL] [Abstract][Full Text] [Related]
27. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase. Matsushika A; Sawayama S Enzyme Microb Technol; 2011 May; 48(6-7):466-71. PubMed ID: 22113018 [TBL] [Abstract][Full Text] [Related]
28. The glucose/xylose facilitator Gxf1 from Candida intermedia expressed in a xylose-fermenting industrial strain of Saccharomyces cerevisiae increases xylose uptake in SSCF of wheat straw. Fonseca C; Olofsson K; Ferreira C; Runquist D; Fonseca LL; Hahn-Hägerdal B; Lidén G Enzyme Microb Technol; 2011 May; 48(6-7):518-25. PubMed ID: 22113025 [TBL] [Abstract][Full Text] [Related]
29. Continuous alcoholic fermentation of glucose/xylose mixtures by co-immobilized Saccharomyces cerevisiae and Candida shehatae. Lebeau T; Jouenne T; Junter GA Appl Microbiol Biotechnol; 1998 Sep; 50(3):309-13. PubMed ID: 9802215 [TBL] [Abstract][Full Text] [Related]
30. The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. Johansson B; Hahn-Hägerdal B FEMS Yeast Res; 2002 Aug; 2(3):277-82. PubMed ID: 12702276 [TBL] [Abstract][Full Text] [Related]
31. A wild and tolerant yeast suitable for ethanol fermentation from lignocellulose. Kodama S; Nakanishi H; Thalagala TA; Isono N; Hisamatsu M J Biosci Bioeng; 2013 May; 115(5):557-61. PubMed ID: 23273910 [TBL] [Abstract][Full Text] [Related]
33. Construction and application of multi-host integrative vector system for xylose-fermenting yeast. Li H; Fan H; Li Y; Shi GY; Ding ZY; Gu ZH; Zhang L FEMS Yeast Res; 2017 Sep; 17(6):. PubMed ID: 28873978 [TBL] [Abstract][Full Text] [Related]
34. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis. Kim SR; Kwee NR; Kim H; Jin YS FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717 [TBL] [Abstract][Full Text] [Related]
35. Factors influencing the utilisation of L-malate by yeasts. Rodriguez SB; Thornton RJ FEMS Microbiol Lett; 1990 Oct; 60(1-2):17-22. PubMed ID: 2283035 [TBL] [Abstract][Full Text] [Related]