These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Patterns of lignin degradation and oxidative enzyme secretion by different wood- and litter-colonizing basidiomycetes and ascomycetes grown on beech-wood. Liers C; Arnstadt T; Ullrich R; Hofrichter M FEMS Microbiol Ecol; 2011 Oct; 78(1):91-102. PubMed ID: 21631549 [TBL] [Abstract][Full Text] [Related]
3. Lignin-modifying enzymes in filamentous basidiomycetes--ecological, functional and phylogenetic review. Lundell TK; Mäkelä MR; Hildén K J Basic Microbiol; 2010 Feb; 50(1):5-20. PubMed ID: 20175122 [TBL] [Abstract][Full Text] [Related]
4. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Martínez AT; Speranza M; Ruiz-Dueñas FJ; Ferreira P; Camarero S; Guillén F; Martínez MJ; Gutiérrez A; del Río JC Int Microbiol; 2005 Sep; 8(3):195-204. PubMed ID: 16200498 [TBL] [Abstract][Full Text] [Related]
5. Production of wood-decay enzymes, mass loss and lignin solubilization in wood by tropical Xylariaceae. Pointing SB; Parungao MM; Hyde KD Mycol Res; 2003 Feb; 107(Pt 2):231-5. PubMed ID: 12747335 [TBL] [Abstract][Full Text] [Related]
6. Insights into lignin degradation and its potential industrial applications. Abdel-Hamid AM; Solbiati JO; Cann IK Adv Appl Microbiol; 2013; 82():1-28. PubMed ID: 23415151 [TBL] [Abstract][Full Text] [Related]
7. New insights into the ligninolytic capability of a wood decay ascomycete. Shary S; Ralph SA; Hammel KE Appl Environ Microbiol; 2007 Oct; 73(20):6691-4. PubMed ID: 17766457 [TBL] [Abstract][Full Text] [Related]
9. Manganese, Mn-dependent peroxidases, and the biodegradation of lignin. Forrester IT; Grabski AC; Burgess RR; Leatham GF Biochem Biophys Res Commun; 1988 Dec; 157(3):992-9. PubMed ID: 3207431 [TBL] [Abstract][Full Text] [Related]
10. Production of wood decay enzymes, loss of mass, and lignin solubilization in wood by diverse tropical freshwater fungi. Bucher VV; Pointing SB; Hyde KD; Reddy CA Microb Ecol; 2004 Oct; 48(3):331-7. PubMed ID: 15692853 [TBL] [Abstract][Full Text] [Related]
11. Biodegradation of lignin by Pseudomonas sp. Q18 and the characterization of a novel bacterial DyP-type peroxidase. Yang C; Yue F; Cui Y; Xu Y; Shan Y; Liu B; Zhou Y; Lü X J Ind Microbiol Biotechnol; 2018 Oct; 45(10):913-927. PubMed ID: 30051274 [TBL] [Abstract][Full Text] [Related]
12. Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin. Nousiainen P; Kontro J; Manner H; Hatakka A; Sipilä J Fungal Genet Biol; 2014 Nov; 72():137-149. PubMed ID: 25108071 [TBL] [Abstract][Full Text] [Related]
13. Lignocellulosic residues: biodegradation and bioconversion by fungi. Sánchez C Biotechnol Adv; 2009; 27(2):185-94. PubMed ID: 19100826 [TBL] [Abstract][Full Text] [Related]
15. Phoma herbarum, a soil fungus able to grow on natural lignin and synthetic lignin (DHP) as sole carbon source and cause lignin degradation. Bi R; Lawoko M; Henriksson G J Ind Microbiol Biotechnol; 2016 Aug; 43(8):1175-82. PubMed ID: 27260523 [TBL] [Abstract][Full Text] [Related]
16. Microbial Diversity in Decaying Oil Palm Empty Fruit Bunches (OPEFB) and Isolation of Lignin-degrading Bacteria from a Tropical Environment. Tahir AA; Mohd Barnoh NF; Yusof N; Mohd Said NN; Utsumi M; Yen AM; Hashim H; Mohd Noor MJM; Akhir FNM; Mohamad SE; Sugiura N; Othman N; Zakaria Z; Hara H Microbes Environ; 2019 Jun; 34(2):161-168. PubMed ID: 31019143 [TBL] [Abstract][Full Text] [Related]
17. Lignin peroxidase H2 from Phanerochaete chrysosporium: purification, characterization and stability to temperature and pH. Tuisel H; Sinclair R; Bumpus JA; Ashbaugh W; Brock BJ; Aust SD Arch Biochem Biophys; 1990 May; 279(1):158-66. PubMed ID: 2337347 [TBL] [Abstract][Full Text] [Related]
18. Linking Enzymatic Oxidative Degradation of Lignin to Organics Detoxification. Wang X; Yao B; Su X Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30373305 [TBL] [Abstract][Full Text] [Related]
19. Degradation of xenobiotic compounds by lignin-degrading white-rot fungi: enzymology and mechanisms involved. Christian V; Shrivastava R; Shukla D; Modi HA; Vyas BR Indian J Exp Biol; 2005 Apr; 43(4):301-12. PubMed ID: 15875713 [TBL] [Abstract][Full Text] [Related]
20. Inactivation of a Pleurotus ostreatus versatile peroxidase-encoding gene (mnp2) results in reduced lignin degradation. Salame TM; Knop D; Levinson D; Mabjeesh SJ; Yarden O; Hadar Y Environ Microbiol; 2014 Jan; 16(1):265-77. PubMed ID: 24119015 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]