BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 9170309)

  • 1. Time-resolved room temperature tryptophan phosphorescence in proteins.
    Schauerte JA; Steel DG; Gafni A
    Methods Enzymol; 1997; 278():49-71. PubMed ID: 9170309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-resolved room temperature protein phosphorescence: nonexponential decay from single emitting tryptophans.
    Schlyer BD; Schauerte JA; Steel DG; Gafni A
    Biophys J; 1994 Sep; 67(3):1192-202. PubMed ID: 7811933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of intermediate protein conformations by room temperature tryptophan phosphorescence spectroscopy during denaturation of Escherichia coli alkaline phosphatase.
    Mersol JV; Steel DG; Gafni A
    Biophys Chem; 1993 Dec; 48(2):281-91. PubMed ID: 8298060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the time-resolved absorption and phosphorescence from the tryptophan triplet state in proteins in solution.
    Gershenson A; Gafni A; Steel D
    Photochem Photobiol; 1998 Apr; 67(4):391-8. PubMed ID: 9559583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiation of the local structure around tryptophan 51 and 64 in recombinant human erythropoietin by tryptophan phosphorescence.
    Kerwin BA; Aoki KH; Gonelli M; Strambini GB
    Photochem Photobiol; 2008; 84(5):1172-81. PubMed ID: 18331401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tryptophan luminescence as a probe of enzyme conformation along the O-acetylserine sulfhydrylase reaction pathway.
    Strambini GB; Cioni P; Cook PF
    Biochemistry; 1996 Jun; 35(25):8392-400. PubMed ID: 8679597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tryptophan phosphorescence at room temperature as a tool to study protein structure and dynamics.
    Papp S; Vanderkooi JM
    Photochem Photobiol; 1989 Jun; 49(6):775-84. PubMed ID: 2672058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time resolved fluorescence and phosphorescence properties of the individual tryptophan residues of barnase: evidence for protein-protein interactions.
    De Beuckeleer K; Volckaert G; Engelborghs Y
    Proteins; 1999 Jul; 36(1):42-53. PubMed ID: 10373005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Room temperature phosphorescence study on the structural flexibility of single tryptophan containing proteins.
    Kowalska-Baron A; Gałęcki K; Wysocki S
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 134():380-7. PubMed ID: 25025310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of lens alpha-crystallin tryptophan microenvironments by room temperature phosphorescence spectroscopy.
    Berger JW; Vanderkooi JM
    Biochemistry; 1989 Jun; 28(13):5501-8. PubMed ID: 2775720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-resolved circularly polarized protein phosphorescence.
    Schauerte JA; Steel DG; Gafni A
    Proc Natl Acad Sci U S A; 1992 Nov; 89(21):10154-8. PubMed ID: 1438204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence and phosphorescence of tryptophan in peptides of different length and sequence.
    Radotić K; Melø TB; Leblanc RM; Yousef YA; Naqvi KR
    J Photochem Photobiol B; 2016 Apr; 157():120-8. PubMed ID: 26916609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Room temperature phosphorescence and the dynamic aspects of protein structure.
    Saviotti ML; Galley WC
    Proc Natl Acad Sci U S A; 1974 Oct; 71(10):4154-8. PubMed ID: 4610571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tryptophan interactions with glycerol/water and trehalose/sucrose cryosolvents: infrared and fluorescence spectroscopy and ab initio calculations.
    Dashnau JL; Zelent B; Vanderkooi JM
    Biophys Chem; 2005 Apr; 114(1):71-83. PubMed ID: 15792863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Luminescence studies with trp repressor and its single-tryptophan mutants.
    Eftink MR; Ramsay GD; Burns L; Maki AH; Mann CJ; Matthews CR; Ghiron CA
    Biochemistry; 1993 Sep; 32(35):9189-98. PubMed ID: 8369286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revisiting time-resolved protein phosphorescence.
    Draganski AR; Corradini MG; Ludescher RD
    Appl Spectrosc; 2015 Sep; 69(9):1074-81. PubMed ID: 26253845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pre-denaturing transitions in human serum albumin probed using time-resolved phosphorescence.
    Sagoo K; Hirsch R; Johnston P; McLoskey D; Hungerford G
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():611-7. PubMed ID: 24509539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorescence measurements of calf gamma-II, III, and IV crystallins at 77 and 293 K.
    Berger JW; Vanderkooi JM; Tallmadge DH; Borkman RF
    Exp Eye Res; 1989 May; 48(5):627-39. PubMed ID: 2737261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein in sugar films and in glycerol/water as examined by infrared spectroscopy and by the fluorescence and phosphorescence of tryptophan.
    Wright WW; Guffanti GT; Vanderkooi JM
    Biophys J; 2003 Sep; 85(3):1980-95. PubMed ID: 12944311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitive monitoring of the dynamics of a membrane-bound transport protein by tryptophan phosphorescence spectroscopy.
    Broos J; Strambini GB; Gonnelli M; Vos EP; Koolhof M; Robillard GT
    Biochemistry; 2000 Sep; 39(35):10877-83. PubMed ID: 10978174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.