BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 9170309)

  • 21. Penetration of analogues of H2O and CO2 in proteins studied by room temperature phosphorescence of tryptophan.
    Wright WW; Owen CS; Vanderkooi JM
    Biochemistry; 1992 Jul; 31(28):6538-44. PubMed ID: 1633165
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of tryptophan environments in glutamate dehydrogenases from temperature-dependent phosphorescence.
    Strambini GB; Cioni P; Felicioli RA
    Biochemistry; 1987 Aug; 26(16):4968-75. PubMed ID: 3663638
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Time-resolved protein phosphorescence in the stopped-flow: denaturation of horse liver alcohol dehydrogenase by urea and guanidine hydrochloride.
    Gonnelli M; Strambini GB
    Biochemistry; 1997 Dec; 36(51):16212-20. PubMed ID: 9405055
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of f-actin tryptophan phosphorescence in the presence and absence of tryptophan-free myosin motor domain.
    Bódis E; Strambini GB; Gonnelli M; Málnási-Csizmadia A; Somogyi B
    Biophys J; 2004 Aug; 87(2):1146-54. PubMed ID: 15298917
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of NAD+ binding on the luminescence of tryptophans 84 and 310 of glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus.
    Gabellieri E; Rahuel-Clermont S; Branlant G; Strambini GB
    Biochemistry; 1996 Sep; 35(38):12549-59. PubMed ID: 8823192
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tryptophan phosphorescence studies of the D-galactose/D-glucose-binding protein from Escherichia coli provide a molecular portrait with structural and dynamics features of the protein.
    D'Auria S; Varriale A; Gonnelli M; Saviano M; Staiano M; Rossi M; Strambini GB
    J Proteome Res; 2007 Apr; 6(4):1306-12. PubMed ID: 17328569
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hybrid phosphorescence and fluorescence native spectroscopy for breast cancer detection.
    Alimova A; Katz A; Sriramoju V; Budansky Y; Bykov AA; Zeylikovich R; Alfano RR
    J Biomed Opt; 2007; 12(1):014004. PubMed ID: 17343479
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Luminescence studies on Bence-Jones proteins and light chains of immunoglobulins and their subunits.
    Longworth JW; McLaughlin CL; Solomon A
    Biochemistry; 1976 Jul; 15(14):2953-8. PubMed ID: 821515
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein rotational dynamics investigated with a dual EPR/optical molecular probe. Spin-labeled eosin.
    Cobb CE; Hustedt EJ; Beechem JM; Beth AH
    Biophys J; 1993 Mar; 64(3):605-13. PubMed ID: 7682451
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphorescence studies of the interaction of myelin basic protein with phosphatidylserine vesicles.
    Vadas EB; Melançon P; Braun PE; Galley WC
    Biochemistry; 1981 May; 20(11):3110-6. PubMed ID: 6166320
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphorescence lifetime of tryptophan in proteins.
    Gonnelli M; Strambini GB
    Biochemistry; 1995 Oct; 34(42):13847-57. PubMed ID: 7577979
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the prevalence of room-temperature protein phosphorescence.
    Vanderkooi JM; Calhoun DB; Englander SW
    Science; 1987 May; 236(4801):568-9. PubMed ID: 3576185
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrogen exchange at the core of Escherichia coli alkaline phosphatase studied by room-temperature tryptophan phosphorescence.
    Fischer CJ; Schauerte JA; Wisser KC; Gafni A; Steel DG
    Biochemistry; 2000 Feb; 39(6):1455-61. PubMed ID: 10684627
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for ligand-induced conformational changes in proteins from phosphorescence spectroscopy.
    Li Z; Galley WC
    Biophys J; 1989 Aug; 56(2):353-60. PubMed ID: 2775830
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tryptophan phosphorescence of G-actin and F-actin.
    Strambini GB; Lehrer SS
    Eur J Biochem; 1991 Feb; 195(3):645-51. PubMed ID: 1999187
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Long time-scale probing of the protein globular core using hydrogen-exchange and room temperature phosphorescence.
    Schlyer BD; Steel DG; Gafni A
    Biochem Biophys Res Commun; 1996 Jun; 223(3):670-4. PubMed ID: 8687454
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Study of conformation transitions in proteins by tryptophan fluorescence and phosphorescence at low temperatures].
    Permiakov EA; Deĭkus GIu
    Mol Biol (Mosk); 1995; 29(2):339-44. PubMed ID: 7783738
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of the tryptophan residues of Escherechia coli alkaline phosphatase by phosphorescence and optically detected magnetic resonance spectroscopy.
    Ghosh S; Misra A; Ozarowski A; Stuart C; Maki AH
    Biochemistry; 2001 Dec; 40(49):15024-30. PubMed ID: 11732924
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tryptophan environments in glutathione transferase of human placenta from temperature-dependent phosphorescence studies.
    Arduini A; Strambini G; Di Ilio C; Aceto A; Storto S; Federici G
    Biochim Biophys Acta; 1989 Nov; 999(2):203-7. PubMed ID: 2597709
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamics of light-induced activation in the PAS domain proteins LOV2 and PYP probed by time-resolved tryptophan fluorescence.
    Hoersch D; Bolourchian F; Otto H; Heyn MP; Bogomolni RA
    Biochemistry; 2010 Dec; 49(51):10811-7. PubMed ID: 21090690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.