These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 9170313)

  • 1. Enhancement of protein spectra with tryptophan analogs: fluorescence spectroscopy of protein-protein and protein-nucleic acid interactions.
    Ross JB; Szabo AG; Hogue CW
    Methods Enzymol; 1997; 278():151-90. PubMed ID: 9170313
    [No Abstract]   [Full Text] [Related]  

  • 2. Fluorescence approaches to study of protein-nucleic acid complexation.
    Hill JJ; Royer CA
    Methods Enzymol; 1997; 278():390-416. PubMed ID: 9170324
    [No Abstract]   [Full Text] [Related]  

  • 3. Ultrafast fluorescence spectroscopy via upconversion applications to biophysics.
    Xu J; Knutson JR
    Methods Enzymol; 2008; 450():159-83. PubMed ID: 19152860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of phosphate ions on the fluorescence of tryptophan derivatives. Implications in fluorescence investigation of protein-nucleic acid complexes.
    Alev-Behmoaras T; Toulmé JJ; Hélène C
    Biochimie; 1979; 61(8):957-60. PubMed ID: 526473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-resolved fluorescence spectroscopy.
    Holzwarth AR
    Methods Enzymol; 1995; 246():334-62. PubMed ID: 7752930
    [No Abstract]   [Full Text] [Related]  

  • 6. Protein induced fluorescence enhancement (PIFE) for probing protein-nucleic acid interactions.
    Hwang H; Myong S
    Chem Soc Rev; 2014 Feb; 43(4):1221-9. PubMed ID: 24056732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hands On: Using Tryptophan Fluorescence Spectroscopy to Study Protein Structure.
    Hellmann N; Schneider D
    Methods Mol Biol; 2019; 1958():379-401. PubMed ID: 30945230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence technologies for monitoring interactions between biological molecules in vitro.
    Deshayes S; Divita G
    Prog Mol Biol Transl Sci; 2013; 113():109-43. PubMed ID: 23244790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-resolved fluorescence of constrained tryptophan derivatives: implications for protein fluorescence.
    McLaughlin ML; Barkley MD
    Methods Enzymol; 1997; 278():190-202. PubMed ID: 9170314
    [No Abstract]   [Full Text] [Related]  

  • 10. Protein aggregation probed by two-photon fluorescence correlation spectroscopy of native tryptophan.
    Sahoo B; Balaji J; Nag S; Kaushalya SK; Maiti S
    J Chem Phys; 2008 Aug; 129(7):075103. PubMed ID: 19044804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining the fluorescence spectrum of a protein.
    Pain RH
    Curr Protoc Protein Sci; 2005 Jan; Chapter 7():7.7.1-7.7.20. PubMed ID: 18429291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional fluorescence correlation spectroscopy: resolution of fluorescence of tryptophan residues in horse heart myoglobin.
    Nakashima K; Yuda K; Ozaki Y; Noda I
    Appl Spectrosc; 2003 Nov; 57(11):1381-5. PubMed ID: 14658152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence correlation spectroscopy: molecular recognition at the single molecule level.
    Van Craenenbroeck E; Engelborghs Y
    J Mol Recognit; 2000; 13(2):93-100. PubMed ID: 10822253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro-environmental influences on the fluorescence of tryptophan.
    Sun F; Zong W; Liu R; Chai J; Liu Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Jul; 76(2):142-5. PubMed ID: 20363661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-resolved fluorescence. An approach in protein analysis.
    Villari A; Micali N; Fresta M; Trusso S; Puglisi G
    Adv Exp Med Biol; 1996; 398():739-47. PubMed ID: 8906351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tryptophan fluorescence quenching as a binding assay to monitor protein conformation changes in the membrane of intact mitochondria.
    Akbar SM; Sreeramulu K; Sharma HC
    J Bioenerg Biomembr; 2016 Jun; 48(3):241-7. PubMed ID: 26905428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decomposition of protein tryptophan fluorescence spectra into log-normal components. III. Correlation between fluorescence and microenvironment parameters of individual tryptophan residues.
    Reshetnyak YK; Koshevnik Y; Burstein EA
    Biophys J; 2001 Sep; 81(3):1735-58. PubMed ID: 11509384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model for multiexponential tryptophan fluorescence intensity decay in proteins.
    Bajzer Z; Prendergast FG
    Biophys J; 1993 Dec; 65(6):2313-23. PubMed ID: 8312471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tryptophan interactions with glycerol/water and trehalose/sucrose cryosolvents: infrared and fluorescence spectroscopy and ab initio calculations.
    Dashnau JL; Zelent B; Vanderkooi JM
    Biophys Chem; 2005 Apr; 114(1):71-83. PubMed ID: 15792863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decomposition of protein tryptophan fluorescence spectra into log-normal components. II. The statistical proof of discreteness of tryptophan classes in proteins.
    Reshetnyak YK; Burstein EA
    Biophys J; 2001 Sep; 81(3):1710-34. PubMed ID: 11509383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.