These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 9170321)

  • 1. Fluorescence studies of zinc finger peptides and proteins.
    Eis PS
    Methods Enzymol; 1997; 278():330-43. PubMed ID: 9170321
    [No Abstract]   [Full Text] [Related]  

  • 2. Substrate dependence of conformational changes in the RNA-binding domain of tristetraprolin assessed by fluorescence spectroscopy of tryptophan mutants.
    Brewer BY; Ballin JD; Fialcowitz-White EJ; Blackshear PJ; Wilson GM
    Biochemistry; 2006 Nov; 45(46):13807-17. PubMed ID: 17105199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Au(dien)(N-heterocycle)](3+): reactivity with biomolecules and zinc finger peptides.
    Spell SR; Farrell NP
    Inorg Chem; 2015 Jan; 54(1):79-86. PubMed ID: 25531886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cobalt complex that selectively disrupts the structure and function of zinc fingers.
    Louie AY; Meade TJ
    Proc Natl Acad Sci U S A; 1998 Jun; 95(12):6663-8. PubMed ID: 9618469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adjacent zinc-finger motifs in multiple zinc-finger peptides from SWI5 form structurally independent, flexibly linked domains.
    Nakaseko Y; Neuhaus D; Klug A; Rhodes D
    J Mol Biol; 1992 Nov; 228(2):619-36. PubMed ID: 1453467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial proximity of the HIV-1 nucleocapsid protein zinc fingers investigated by time-resolved fluorescence and fluorescence resonance energy transfer.
    Mély Y; Jullian N; Morellet N; De Rocquigny H; Dong CZ; Piémont E; Roques BP; Gérard D
    Biochemistry; 1994 Oct; 33(40):12085-91. PubMed ID: 7918429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deducing the energetic cost of protein folding in zinc finger proteins using designed metallopeptides.
    Reddi AR; Guzman TR; Breece RM; Tierney DL; Gibney BR
    J Am Chem Soc; 2007 Oct; 129(42):12815-27. PubMed ID: 17902663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multiscale approach to simulating the conformational properties of unbound multi-C₂H₂ zinc finger proteins.
    Liu L; Wade RC; Heermann DW
    Proteins; 2015 Sep; 83(9):1604-15. PubMed ID: 26062035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of Aart, a designed six-finger zinc finger peptide, bound to DNA.
    Segal DJ; Crotty JW; Bhakta MS; Barbas CF; Horton NC
    J Mol Biol; 2006 Oct; 363(2):405-21. PubMed ID: 16963084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selected peptide extension contacts hydrophobic patch on neighboring zinc finger and mediates dimerization on DNA.
    Wang BS; Grant RA; Pabo CO
    Nat Struct Biol; 2001 Jul; 8(7):589-93. PubMed ID: 11427887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoresponsive tandem zinc finger peptide.
    Nomura A; Okamoto A
    Chem Commun (Camb); 2009 Apr; (14):1906-8. PubMed ID: 19319441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and dynamic characterization of the aromatic amino acids of the human immunodeficiency virus type I nucleocapsid protein zinc fingers and their involvement in heterologous tRNA(Phe) binding: a steady-state and time-resolved fluorescence study.
    Mély Y; Piémont E; Sorinas-Jimeno M; de Rocquigny H; Jullian N; Morellet N; Roques BP; Gérard D
    Biophys J; 1993 Oct; 65(4):1513-22. PubMed ID: 8274645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal binding and folding properties of a minimalist Cys2His2 zinc finger peptide.
    Michael SF; Kilfoil VJ; Schmidt MH; Amann BT; Berg JM
    Proc Natl Acad Sci U S A; 1992 Jun; 89(11):4796-800. PubMed ID: 1594580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitive probes of protein structure and dynamics in well-controlled environments: combining mass spectrometry with fluorescence spectroscopy.
    Czar MF; Jockusch RA
    Curr Opin Struct Biol; 2015 Oct; 34():123-34. PubMed ID: 26490336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of length and position of an extended linker on sequence-selective DNA recognition of zinc finger peptides.
    Nomura W; Sugiura Y
    Biochemistry; 2003 Dec; 42(50):14805-13. PubMed ID: 14674754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MRE-Binding transcription factor-1: weak zinc-binding finger domains 5 and 6 modulate the structure, affinity, and specificity of the metal-response element complex.
    Chen X; Chu M; Giedroc DP
    Biochemistry; 1999 Sep; 38(39):12915-25. PubMed ID: 10504263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and thermodynamics of zinc(II) and arsenic(III) binding to XPA and PARP-1 zinc finger peptides.
    Huestis J; Zhou X; Chen L; Feng C; Hudson LG; Liu KJ
    J Inorg Biochem; 2016 Oct; 163():45-52. PubMed ID: 27521476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of a synthetic peptide as a tool to study the interaction of heavy metals with the zinc finger domain of proteins critical for gene expression in the developing brain.
    Razmiafshari M; Zawia NH
    Toxicol Appl Pharmacol; 2000 Jul; 166(1):1-12. PubMed ID: 10873713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Greater binding affinity of trivalent antimony to a CCCH zinc finger domain compared to a CCHC domain of kinetoplastid proteins.
    Frézard F; Silva H; Pimenta AM; Farrell N; Demicheli C
    Metallomics; 2012 May; 4(5):433-40. PubMed ID: 22454083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New redesigned zinc-finger proteins: design strategy and its application.
    Negi S; Imanishi M; Matsumoto M; Sugiura Y
    Chemistry; 2008; 14(11):3236-49. PubMed ID: 18236477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.