BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 9171168)

  • 1. Functional characterization of NGF-secreting cell grafts to the acutely injured spinal cord.
    Tuszynski MH; Murai K; Blesch A; Grill R; Miller I
    Cell Transplant; 1997; 6(3):361-8. PubMed ID: 9171168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grafts of fibroblasts genetically modified to secrete NGF, BDNF, NT-3, or basic FGF elicit differential responses in the adult spinal cord.
    Nakahara Y; Gage FH; Tuszynski MH
    Cell Transplant; 1996; 5(2):191-204. PubMed ID: 8689031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust growth of chronically injured spinal cord axons induced by grafts of genetically modified NGF-secreting cells.
    Grill RJ; Blesch A; Tuszynski MH
    Exp Neurol; 1997 Dec; 148(2):444-52. PubMed ID: 9417824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration.
    Tobias CA; Shumsky JS; Shibata M; Tuszynski MH; Fischer I; Tessler A; Murray M
    Exp Neurol; 2003 Nov; 184(1):97-113. PubMed ID: 14637084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive astrocytes are substrates for the growth of adult CNS axons in the presence of elevated levels of nerve growth factor.
    Kawaja MD; Gage FH
    Neuron; 1991 Dec; 7(6):1019-30. PubMed ID: 1684900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nerve growth factor-hypersecreting Schwann cell grafts augment and guide spinal cord axonal growth and remyelinate central nervous system axons in a phenotypically appropriate manner that correlates with expression of L1.
    Weidner N; Blesch A; Grill RJ; Tuszynski MH
    J Comp Neurol; 1999 Nov; 413(4):495-506. PubMed ID: 10495438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grafts of genetically modified Schwann cells to the spinal cord: survival, axon growth, and myelination.
    Tuszynski MH; Weidner N; McCormack M; Miller I; Powell H; Conner J
    Cell Transplant; 1998; 7(2):187-96. PubMed ID: 9588600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fibroblasts genetically modified to produce nerve growth factor induce robust neuritic ingrowth after grafting to the spinal cord.
    Tuszynski MH; Peterson DA; Ray J; Baird A; Nakahara Y; Gage FH
    Exp Neurol; 1994 Mar; 126(1):1-14. PubMed ID: 8157119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular GDNF delivery promotes growth of motor and dorsal column sensory axons after partial and complete spinal cord transections and induces remyelination.
    Blesch A; Tuszynski MH
    J Comp Neurol; 2003 Dec; 467(3):403-17. PubMed ID: 14608602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous and augmented growth of axons in the primate spinal cord: effects of local injury and nerve growth factor-secreting cell grafts.
    Tuszynski MH; Grill R; Jones LL; McKay HM; Blesch A
    J Comp Neurol; 2002 Jul; 449(1):88-101. PubMed ID: 12115695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transplants of cells genetically modified to express neurotrophin-3 rescue axotomized Clarke's nucleus neurons after spinal cord hemisection in adult rats.
    Himes BT; Liu Y; Solowska JM; Snyder EY; Fischer I; Tessler A
    J Neurosci Res; 2001 Sep; 65(6):549-64. PubMed ID: 11550223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axonal regeneration through regions of chondroitin sulfate proteoglycan deposition after spinal cord injury: a balance of permissiveness and inhibition.
    Jones LL; Sajed D; Tuszynski MH
    J Neurosci; 2003 Oct; 23(28):9276-88. PubMed ID: 14561854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leukemia inhibitory factor augments neurotrophin expression and corticospinal axon growth after adult CNS injury.
    Blesch A; Uy HS; Grill RJ; Cheng JG; Patterson PH; Tuszynski MH
    J Neurosci; 1999 May; 19(9):3556-66. PubMed ID: 10212315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IGF-I gene delivery promotes corticospinal neuronal survival but not regeneration after adult CNS injury.
    Hollis ER; Lu P; Blesch A; Tuszynski MH
    Exp Neurol; 2009 Jan; 215(1):53-9. PubMed ID: 18938163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regeneration of adult rat sensory and motor neuron axons through chimeric peroneal nerve grafts containing donor Schwann cells engineered to express different neurotrophic factors.
    Godinho MJ; Staal JL; Krishnan VS; Hodgetts SI; Pollett MA; Goodman DP; Teh L; Verhaagen J; Plant GW; Harvey AR
    Exp Neurol; 2020 Aug; 330():113355. PubMed ID: 32422148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Somatic gene transfer of nerve growth factor promotes the survival of axotomized septal neurons and the regeneration of their axons in adult rats.
    Kawaja MD; Rosenberg MB; Yoshida K; Gage FH
    J Neurosci; 1992 Jul; 12(7):2849-64. PubMed ID: 1319481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury.
    Grill R; Murai K; Blesch A; Gage FH; Tuszynski MH
    J Neurosci; 1997 Jul; 17(14):5560-72. PubMed ID: 9204937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nerve growth factor delivery by gene transfer induces differential outgrowth of sensory, motor, and noradrenergic neurites after adult spinal cord injury.
    Tuszynski MH; Gabriel K; Gage FH; Suhr S; Meyer S; Rosetti A
    Exp Neurol; 1996 Jan; 137(1):157-73. PubMed ID: 8566208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurotrophism without neurotropism: BDNF promotes survival but not growth of lesioned corticospinal neurons.
    Lu P; Blesch A; Tuszynski MH
    J Comp Neurol; 2001 Aug; 436(4):456-70. PubMed ID: 11447589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NT-3 gene delivery elicits growth of chronically injured corticospinal axons and modestly improves functional deficits after chronic scar resection.
    Tuszynski MH; Grill R; Jones LL; Brant A; Blesch A; Löw K; Lacroix S; Lu P
    Exp Neurol; 2003 May; 181(1):47-56. PubMed ID: 12710933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.