BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 9171181)

  • 41. New technique to extend the useful life of a biodegradable cartilage implant.
    Spain TL; Agrawal CM; Athanasiou KA
    Tissue Eng; 1998; 4(4):343-52. PubMed ID: 9916167
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The evaluation of various bioabsorbable materials on the titanium fiber metal tracheal prosthesis.
    Mendak SH; Jensik RJ; Haklin MF; Roseman DL
    Ann Thorac Surg; 1984 Nov; 38(5):488-93. PubMed ID: 6497477
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In vitro degradation and biocompatibility of poly(DL-lactide-epsilon-caprolactone) nerve guides.
    Meek MF; Jansen K; Steendam R; van Oeveren W; van Wachem PB; van Luyn MJ
    J Biomed Mater Res A; 2004 Jan; 68(1):43-51. PubMed ID: 14661248
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nonsuture dural repair using polyglycolic acid mesh and fibrin glue: clinical application to spinal surgery.
    Hida K; Yamaguchi S; Seki T; Yano S; Akino M; Terasaka S; Uchida T; Iwasaki Y
    Surg Neurol; 2006 Feb; 65(2):136-42; discussion 142-3. PubMed ID: 16427404
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Preparation and characterization of a novel acellular swim bladder as dura mater substitute.
    Li Q; Zhang F; Wang H; Pan T
    Neurol Res; 2019 Mar; 41(3):242-249. PubMed ID: 30912483
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A New Absorbable Synthetic Substitute With Biomimetic Design for Dural Tissue Repair.
    Shi Z; Xu T; Yuan Y; Deng K; Liu M; Ke Y; Luo C; Yuan T; Ayyad A
    Artif Organs; 2016 Apr; 40(4):403-13. PubMed ID: 26526152
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Closure of the pleural dead space after pneumonectomy in a rabbit model: use of bioabsorbable lactic acid and caprolactone copolymer cubes.
    Chang SS; Igai H; Misaki N; Gotoh M; Yamamoto Y; Tabata Y; Yokomise H
    ASAIO J; 2008; 54(1):109-14. PubMed ID: 18204325
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Clinical experience with expanded polytetrafluoroethylene sheet used as an artificial dura mater.
    Yamagata S; Goto K; Oda Y; Kikuchi H
    Neurol Med Chir (Tokyo); 1993 Aug; 33(8):582-5. PubMed ID: 7692335
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Intraoperative sealing of dura mater defects with a novel, synthetic, self adhesive patch: application experience in 25 patients.
    von der Brelie C; Soehle M; Clusmann HR
    Br J Neurosurg; 2012 Apr; 26(2):231-5. PubMed ID: 22077588
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Trends in the development of bioresorbable polymers for medical applications.
    Pulapura S; Kohn J
    J Biomater Appl; 1992 Jan; 6(3):216-50. PubMed ID: 1573554
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Polyglycolic acid/poly-L-lactic acid copolymer use in laryngotracheal reconstruction: a rabbit model.
    Klein AM; Graham VL; Gulleth Y; Lafreniere D
    Laryngoscope; 2005 Apr; 115(4):583-7. PubMed ID: 15805863
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bioabsorbable spiral stents in the urethra.
    Tammela TL; Talja M; Petas A; Välimaa T; Törmälä P
    Scand J Urol Nephrol Suppl; 1996; 179():97-100. PubMed ID: 8908673
    [No Abstract]   [Full Text] [Related]  

  • 53. A new bilayer chitosan scaffolding as a dural substitute: experimental evaluation.
    Sandoval-Sánchez JH; Ramos-Zúñiga R; de Anda SL; López-Dellamary F; Gonzalez-Castañeda R; Ramírez-Jaimes Jde L; Jorge-Espinoza G
    World Neurosurg; 2012; 77(3-4):577-82. PubMed ID: 22120335
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Duraplasty with biosynthetic cellulose: an experimental study.
    Mello LR; Feltrin LT; Fontes Neto PT; Ferraz FA
    J Neurosurg; 1997 Jan; 86(1):143-50. PubMed ID: 8988093
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bioabsorption of polylactides with different molecular properties.
    Nakamura T; Hitomi S; Watanabe S; Shimizu Y; Jamshidi K; Hyon SH; Ikada Y
    J Biomed Mater Res; 1989 Oct; 23(10):1115-30. PubMed ID: 2808460
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bioabsorbable fixation devices in trauma and bone surgery: current clinical standing.
    Waris E; Konttinen YT; Ashammakhi N; Suuronen R; Santavirta S
    Expert Rev Med Devices; 2004 Nov; 1(2):229-40. PubMed ID: 16293043
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Studies on in vivo biocompatibility and biodegradation of absorbable material of polylactic acid].
    Ruan DK
    Zhonghua Wai Ke Za Zhi; 1993 Sep; 31(9):568-70. PubMed ID: 8033728
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Use of a biodegradable elastin-fibrin material, Neuroplast, as a dural substitute.
    San-Galli F; Deminière C; Guérin J; Rabaud M
    Biomaterials; 1996 Jun; 17(11):1081-5. PubMed ID: 8718967
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Collagen-only biomatrix as a novel dural substitute. Examination of the efficacy, safety and outcome: clinical experience on a series of 208 patients.
    Esposito F; Cappabianca P; Fusco M; Cavallo LM; Bani GG; Biroli F; Sparano A; de Divitiis O; Signorelli A
    Clin Neurol Neurosurg; 2008 Apr; 110(4):343-51. PubMed ID: 18242823
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Osteoconductive and degradable electrospun nonwoven poly(epsilon-caprolactone)/CaO-SiO2 gel composite fabric.
    Seol YJ; Kim KH; Kim IA; Rhee SH
    J Biomed Mater Res A; 2010 Aug; 94(2):649-59. PubMed ID: 20213814
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.