These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 9171286)

  • 1. Small-molecule-substrate interactions with a self-aminoacylating ribozyme.
    Illangasekare M; Yarus M
    J Mol Biol; 1997 May; 268(3):631-9. PubMed ID: 9171286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Essential structures of a self-aminoacylating RNA.
    Illangasekare M; Kovalchuke O; Yarus M
    J Mol Biol; 1997 Dec; 274(4):519-29. PubMed ID: 9417932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aminoacyl-RNA synthesis catalyzed by an RNA.
    Illangasekare M; Sanchez G; Nickles T; Yarus M
    Science; 1995 Feb; 267(5198):643-7. PubMed ID: 7530860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ribozyme-catalyzed tRNA aminoacylation.
    Lee N; Bessho Y; Wei K; Szostak JW; Suga H
    Nat Struct Biol; 2000 Jan; 7(1):28-33. PubMed ID: 10625423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A tiny RNA that catalyzes both aminoacyl-RNA and peptidyl-RNA synthesis.
    Illangasekare M; Yarus M
    RNA; 1999 Nov; 5(11):1482-9. PubMed ID: 10580476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic tRNA acylation by acid and alpha-hydroxy acid analogues of amino acids.
    Owczarek A; Safro M; Wolfson AD
    Biochemistry; 2008 Jan; 47(1):301-7. PubMed ID: 18067322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic N-methylaminoacylation of tRNA using chemically misacylated AMP as a substrate.
    Sando S; Masu H; Furutani C; Aoyama Y
    Org Biomol Chem; 2008 Aug; 6(15):2666-8. PubMed ID: 18633520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of divalent metal ions on individual steps of the Tetrahymena ribozyme reaction.
    McConnell TS; Herschlag D; Cech TR
    Biochemistry; 1997 Jul; 36(27):8293-303. PubMed ID: 9204875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-Acetyl-D- and L-esters of 5'-AMP hydrolyze at different rates.
    Wickramasinghe NS; Lacey JC
    Chirality; 1993; 5():150-3. PubMed ID: 11540505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide bond formation by in vitro selected ribozymes.
    Zhang B; Cech TR
    Nature; 1997 Nov; 390(6655):96-100. PubMed ID: 9363898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycyl-tRNA synthetase uses a negatively charged pit for specific recognition and activation of glycine.
    Arnez JG; Dock-Bregeon AC; Moras D
    J Mol Biol; 1999 Mar; 286(5):1449-59. PubMed ID: 10064708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structures of phenylalanyl-tRNA synthetase complexed with phenylalanine and a phenylalanyl-adenylate analogue.
    Reshetnikova L; Moor N; Lavrik O; Vassylyev DG
    J Mol Biol; 1999 Apr; 287(3):555-68. PubMed ID: 10092459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A selected ribozyme catalyzing diverse dipeptide synthesis.
    Sun L; Cui Z; Gottlieb RL; Zhang B
    Chem Biol; 2002 May; 9(5):619-28. PubMed ID: 12031668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capillary electrophoresis of RNA oligonucleotides: catalytic activity of a hammerhead ribozyme.
    Saevels J; Van Schepdael A; Hoogmartens J
    Anal Biochem; 1999 Jan; 266(1):93-101. PubMed ID: 9887217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic considerations for general acid-base catalysis by RNA: revisiting the mechanism of the hairpin ribozyme.
    Bevilacqua PC
    Biochemistry; 2003 Mar; 42(8):2259-65. PubMed ID: 12600192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligand requirements for glmS ribozyme self-cleavage.
    McCarthy TJ; Plog MA; Floy SA; Jansen JA; Soukup JK; Soukup GA
    Chem Biol; 2005 Nov; 12(11):1221-6. PubMed ID: 16298301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the role of metal ions in RNA catalysis: kinetic and thermodynamic characterization of a metal ion interaction with the 2'-moiety of the guanosine nucleophile in the Tetrahymena group I ribozyme.
    Shan SO; Herschlag D
    Biochemistry; 1999 Aug; 38(34):10958-75. PubMed ID: 10460151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and secondary structure analysis of Naegleria andersoni GIR1, a group I ribozyme whose putative biological function is site-specific hydrolysis.
    Jabri E; Aigner S; Cech TR
    Biochemistry; 1997 Dec; 36(51):16345-54. PubMed ID: 9405070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prokaryotic and eukaryotic tetrameric phenylalanyl-tRNA synthetases display conservation of the binding mode of the tRNA(Phe) CCA end.
    Moor N; Lavrik O; Favre A; Safro M
    Biochemistry; 2003 Sep; 42(36):10697-708. PubMed ID: 12962494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smaller, faster ribozymes reveal the catalytic core of Neurospora VS RNA.
    Rastogi T; Collins RA
    J Mol Biol; 1998 Mar; 277(2):215-24. PubMed ID: 9514764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.