These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 9171335)

  • 1. Negatively charged amino acid residues play an active role in orienting the Sec-independent Pf3 coat protein in the Escherichia coli inner membrane.
    Kiefer D; Hu X; Dalbey R; Kuhn A
    EMBO J; 1997 May; 16(9):2197-204. PubMed ID: 9171335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrophobic forces drive spontaneous membrane insertion of the bacteriophage Pf3 coat protein without topological control.
    Kiefer D; Kuhn A
    EMBO J; 1999 Nov; 18(22):6299-306. PubMed ID: 10562542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of SecDF and YidC in the membrane insertion of M13 procoat mutants.
    Chen M; Xie K; Yuan J; Yi L; Facey SJ; Pradel N; Wu LF; Kuhn A; Dalbey RE
    Biochemistry; 2005 Aug; 44(31):10741-9. PubMed ID: 16060683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the capsid of Pf3 filamentous phage determined from X-ray fibre diffraction data at 3.1 A resolution.
    Welsh LC; Symmons MF; Sturtevant JM; Marvin DA; Perham RN
    J Mol Biol; 1998; 283(1):155-77. PubMed ID: 9761681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Pf3 coat protein contacts TM1 and TM3 of YidC during membrane biogenesis.
    Klenner C; Yuan J; Dalbey RE; Kuhn A
    FEBS Lett; 2008 Dec; 582(29):3967-72. PubMed ID: 18996118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues.
    von Heijne G
    Nature; 1989 Oct; 341(6241):456-8. PubMed ID: 2677744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cytoplasmic carboxy terminus of M13 procoat is required for the membrane insertion of its central domain.
    Kuhn A; Wickner W; Kreil G
    Nature; 1986 Jul 24-30; 322(6077):335-9. PubMed ID: 3526160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane assembly of the bacteriophage Pf3 major coat protein.
    Meijer AB; Spruijt RB; Wolfs CJ; Hemminga MA
    Biochemistry; 2000 May; 39(20):6157-63. PubMed ID: 10821689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The function of a leader peptide in translocating charged amino acyl residues across a membrane.
    Rohrer J; Kuhn A
    Science; 1990 Dec; 250(4986):1418-21. PubMed ID: 2124001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cysteine residues in the transmembrane regions of M13 procoat protein suggest that oligomeric coat proteins assemble onto phage progeny.
    Nagler C; Nagler G; Kuhn A
    J Bacteriol; 2007 Apr; 189(7):2897-905. PubMed ID: 17237167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a discrete intermediate in the assembly/disassembly of physalis mottle tymovirus through mutational analysis.
    Sastri M; Reddy DS; Krishna SS; Murthy MR; Savithri HS
    J Mol Biol; 1999 Jun; 289(4):905-18. PubMed ID: 10369771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two histidines of the coat protein of turnip yellow mosaic virus at the capsid interior are crucial for viability.
    Bink HH; Roepan SK; Pleij CW
    Proteins; 2004 May; 55(2):236-44. PubMed ID: 15048817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct interaction of YidC with the Sec-independent Pf3 coat protein during its membrane protein insertion.
    Chen M; Samuelson JC; Jiang F; Muller M; Kuhn A; Dalbey RE
    J Biol Chem; 2002 Mar; 277(10):7670-5. PubMed ID: 11751917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of capsid structure and membrane protein processing in determining the size and copy number of peptides displayed on the major coat protein of filamentous bacteriophage.
    Malik P; Terry TD; Gowda LR; Langara A; Petukhov SA; Symmons MF; Welsh LC; Marvin DA; Perham RN
    J Mol Biol; 1996 Jul; 260(1):9-21. PubMed ID: 8676395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Positively and negatively charged residues have different effects on the position in the membrane of a model transmembrane helix.
    Monné M; Nilsson I; Johansson M; Elmhed N; von Heijne G
    J Mol Biol; 1998 Dec; 284(4):1177-83. PubMed ID: 9837735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The proton motive force, acting on acidic residues, promotes translocation of amino-terminal domains of membrane proteins when the hydrophobicity of the translocation signal is low.
    Delgado-Partin VM; Dalbey RE
    J Biol Chem; 1998 Apr; 273(16):9927-34. PubMed ID: 9545336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A conserved internal hydrophobic domain mediates the stable membrane integration of the dengue virus capsid protein.
    Markoff L; Falgout B; Chang A
    Virology; 1997 Jun; 233(1):105-17. PubMed ID: 9201220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local dynamics of the M13 major coat protein in different membrane-mimicking systems.
    Stopar D; Spruijt RB; Wolfs CJ; Hemminga MA
    Biochemistry; 1996 Dec; 35(48):15467-73. PubMed ID: 8952500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the role of interfacial tryptophan residues in controlling the topology of membrane proteins.
    Ridder AN; Morein S; Stam JG; Kuhn A; de Kruijff B; Killian JA
    Biochemistry; 2000 May; 39(21):6521-8. PubMed ID: 10828968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arginine mutations within a transmembrane domain of Tar, an Escherichia coli aspartate receptor, can drive homodimer dissociation and heterodimer association in vivo.
    Sal-Man N; Shai Y
    Biochem J; 2005 Jan; 385(Pt 1):29-36. PubMed ID: 15330757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.