These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 9171383)

  • 21. The UGA4 UASNTR site required for GLN3-dependent transcriptional activation also mediates DAL80-responsive regulation and DAL80 protein binding in Saccharomyces cerevisiae.
    Cunningham TS; Dorrington RA; Cooper TG
    J Bacteriol; 1994 Aug; 176(15):4718-25. PubMed ID: 8045902
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Saccharomyces cerevisiae GATA sequences function as TATA elements during nitrogen catabolite repression and when Gln3p is excluded from the nucleus by overproduction of Ure2p.
    Cox KH; Rai R; Distler M; Daugherty JR; Coffman JA; Cooper TG
    J Biol Chem; 2000 Jun; 275(23):17611-8. PubMed ID: 10748041
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of general amino acid permeases Gap1p, GATA transcription factors Gln3p and Gat1p on 2-phenylethanol biosynthesis via Ehrlich pathway.
    Chen X; Wang Z; Guo X; Liu S; He X
    J Biotechnol; 2017 Jan; 242():83-91. PubMed ID: 27908775
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A co-activator of nitrogen-regulated transcription in Saccharomyces cerevisiae.
    Soussi-Boudekou S; André B
    Mol Microbiol; 1999 Feb; 31(3):753-62. PubMed ID: 10048020
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The yeast GATA factor Gat1 occupies a central position in nitrogen catabolite repression-sensitive gene activation.
    Georis I; Feller A; Vierendeels F; Dubois E
    Mol Cell Biol; 2009 Jul; 29(13):3803-15. PubMed ID: 19380492
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Saccharomyces cerevisiae DAL80 repressor protein binds to multiple copies of GATAA-containing sequences (URSGATA).
    Cunningham TS; Cooper TG
    J Bacteriol; 1993 Sep; 175(18):5851-61. PubMed ID: 8376332
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cis- and trans-acting elements determining induction of the genes of the gamma-aminobutyrate (GABA) utilization pathway in Saccharomyces cerevisiae.
    Talibi D; Grenson M; André B
    Nucleic Acids Res; 1995 Feb; 23(4):550-7. PubMed ID: 7899074
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction of the GATA factor Gln3p with the nitrogen regulator Ure2p in Saccharomyces cerevisiae.
    Blinder D; Coschigano PW; Magasanik B
    J Bacteriol; 1996 Aug; 178(15):4734-6. PubMed ID: 8755910
    [TBL] [Abstract][Full Text] [Related]  

  • 29. G1n3p is capable of binding to UAS(NTR) elements and activating transcription in Saccharomyces cerevisiae.
    Cunningham TS; Svetlov VV; Rai R; Smart W; Cooper TG
    J Bacteriol; 1996 Jun; 178(12):3470-9. PubMed ID: 8655543
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapamycin treatment results in GATA factor-independent hyperphosphorylation of the proline utilization pathway activator in Saccharomyces cerevisiae.
    Saxena D; Kannan KB; Brandriss MC
    Eukaryot Cell; 2003 Jun; 2(3):552-9. PubMed ID: 12796300
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Urmylation controls Nil1p and Gln3p-dependent expression of nitrogen-catabolite repressed genes in Saccharomyces cerevisiae.
    Rubio-Texeira M
    FEBS Lett; 2007 Feb; 581(3):541-50. PubMed ID: 17254574
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A family of ammonium transporters in Saccharomyces cerevisiae.
    Marini AM; Soussi-Boudekou S; Vissers S; Andre B
    Mol Cell Biol; 1997 Aug; 17(8):4282-93. PubMed ID: 9234685
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mks1p is required for negative regulation of retrograde gene expression in Saccharomyces cerevisiae but does not affect nitrogen catabolite repression-sensitive gene expression.
    Tate JJ; Cox KH; Rai R; Cooper TG
    J Biol Chem; 2002 Jun; 277(23):20477-82. PubMed ID: 11923302
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Overlapping positive and negative GATA factor binding sites mediate inducible DAL7 gene expression in Saccharomyces cerevisiae.
    Rai R; Daugherty JR; Cunningham TS; Cooper TG
    J Biol Chem; 1999 Sep; 274(39):28026-34. PubMed ID: 10488154
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integration of the multiple controls regulating the expression of the arginase gene CAR1 of Saccharomyces cerevisiae in response to differentnitrogen signals: role of Gln3p, ArgRp-Mcm1p, and Ume6p.
    Dubois E; Messenguy F
    Mol Gen Genet; 1997 Feb; 253(5):568-80. PubMed ID: 9065690
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon- and nitrogen-quality signaling to translation are mediated by distinct GATA-type transcription factors.
    Kuruvilla FG; Shamji AF; Schreiber SL
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7283-8. PubMed ID: 11416207
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two transcription factors, Gln3p and Nil1p, use the same GATAAG sites to activate the expression of GAP1 of Saccharomyces cerevisiae.
    Stanbrough M; Magasanik B
    J Bacteriol; 1996 Apr; 178(8):2465-8. PubMed ID: 8636059
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The modification of Gat1p in nitrogen catabolite repression to enhance non-preferred nitrogen utilization in Saccharomyces cerevisiae.
    Zhao X; Zou H; Chen J; Du G; Zhou J
    Sci Rep; 2016 Feb; 6():21603. PubMed ID: 26899143
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nitrogen regulation in Saccharomyces cerevisiae.
    Magasanik B; Kaiser CA
    Gene; 2002 May; 290(1-2):1-18. PubMed ID: 12062797
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gln3p nuclear localization and interaction with Ure2p in Saccharomyces cerevisiae.
    Kulkarni AA; Abul-Hamd AT; Rai R; El Berry H; Cooper TG
    J Biol Chem; 2001 Aug; 276(34):32136-44. PubMed ID: 11408486
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.