These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 9171383)

  • 61. Effects of abolishing Whi2 on the proteome and nitrogen catabolite repression-sensitive protein production.
    Tate JJ; Marsikova J; Vachova L; Palkova Z; Cooper TG
    G3 (Bethesda); 2022 Mar; 12(3):. PubMed ID: 35100365
    [TBL] [Abstract][Full Text] [Related]  

  • 62. New insights into the regulation of the Saccharomyces cerevisiae UGA4 gene: two parallel pathways participate in carbon-regulated transcription.
    Luzzani C; Cardillo SB; Bermúdez Moretti M; Correa García S
    Microbiology (Reading); 2007 Nov; 153(Pt 11):3677-3684. PubMed ID: 17975075
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A GATA-type transcription factor AcAREB for nitrogen metabolism is involved in regulation of cephalosporin biosynthesis in Acremonium chrysogenum.
    Guan F; Pan Y; Li J; Liu G
    Sci China Life Sci; 2017 Sep; 60(9):958-967. PubMed ID: 28812298
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Synergistic operation of the CAR2 (Ornithine transaminase) promoter elements in Saccharomyces cerevisiae.
    Park HD; Scott S; Rai R; Dorrington R; Cooper TG
    J Bacteriol; 1999 Nov; 181(22):7052-64. PubMed ID: 10559172
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Constitutive and nitrogen catabolite repression-sensitive production of Gat1 isoforms.
    Rai R; Tate JJ; Georis I; Dubois E; Cooper TG
    J Biol Chem; 2014 Jan; 289(5):2918-33. PubMed ID: 24324255
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Activity of a C. elegans GATA transcription factor, ELT-1, expressed in yeast.
    Shim YH; Bonner JJ; Blumenthal T
    J Mol Biol; 1995 Nov; 253(5):665-76. PubMed ID: 7473742
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Constitutive expression of the UGA4 gene in Saccharomyces cerevisiae depends on two positive-acting proteins, Uga3p and Uga35p.
    Garcia SC; Moretti MB; Batlle A
    FEMS Microbiol Lett; 2000 Mar; 184(2):219-24. PubMed ID: 10713424
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Nitrogen regulation involved in the accumulation of urea in Saccharomyces cerevisiae.
    Zhao X; Zou H; Fu J; Chen J; Zhou J; Du G
    Yeast; 2013 Nov; 30(11):437-47. PubMed ID: 23996237
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Recognition of nitrogen-responsive upstream activation sequences of Saccharomyces cerevisiae by the product of the GLN3 gene.
    Blinder D; Magasanik B
    J Bacteriol; 1995 Jul; 177(14):4190-3. PubMed ID: 7608102
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Glutamine transport as a possible regulator of nitrogen catabolite repression in Saccharomyces cerevisiae.
    Georis I; Fayyad-Kazan M; Zaremba E; Vierendeels F; Roovers M; Dubois E
    Yeast; 2022 Sep; 39(9):493-507. PubMed ID: 35942513
    [TBL] [Abstract][Full Text] [Related]  

  • 71. General Amino Acid Control and 14-3-3 Proteins Bmh1/2 Are Required for Nitrogen Catabolite Repression-Sensitive Regulation of Gln3 and Gat1 Localization.
    Tate JJ; Buford D; Rai R; Cooper TG
    Genetics; 2017 Feb; 205(2):633-655. PubMed ID: 28007891
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Metabolic Engineering of Four GATA Factors to Reduce Urea and Ethyl Carbamate Formation in a Model Rice Wine System.
    Zhang P; Li B; Wen P; Wang P; Yang Y; Chen Q; Chang Y; Hu X
    J Agric Food Chem; 2018 Oct; 66(41):10881-10889. PubMed ID: 30246534
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Mks1p is a regulator of nitrogen catabolism upstream of Ure2p in Saccharomyces cerevisiae.
    Edskes HK; Hanover JA; Wickner RB
    Genetics; 1999 Oct; 153(2):585-94. PubMed ID: 10511541
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The CCAAT box-binding factor stimulates ammonium assimilation in Saccharomyces cerevisiae, defining a new cross-pathway regulation between nitrogen and carbon metabolisms.
    Dang VD; Bohn C; Bolotin-Fukuhara M; Daignan-Fornier B
    J Bacteriol; 1996 Apr; 178(7):1842-9. PubMed ID: 8606156
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Components of Golgi-to-vacuole trafficking are required for nitrogen- and TORC1-responsive regulation of the yeast GATA factors.
    Fayyadkazan M; Tate JJ; Vierendeels F; Cooper TG; Dubois E; Georis I
    Microbiologyopen; 2014 Jun; 3(3):271-87. PubMed ID: 24644271
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Sequences of two adjacent genes, one (DAL2) encoding allantoicase and another (DCG1) sensitive to nitrogen-catabolite repression in Saccharomyces cerevisiae.
    Yoo HS; Cooper TG
    Gene; 1991 Jul; 104(1):55-62. PubMed ID: 1916277
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Saturation mutagenesis of the UASNTR (GATAA) responsible for nitrogen catabolite repression-sensitive transcriptional activation of the allantoin pathway genes in Saccharomyces cerevisiae.
    Bysani N; Daugherty JR; Cooper TG
    J Bacteriol; 1991 Aug; 173(16):4977-82. PubMed ID: 1860815
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Regulation of the yeast glycine cleavage genes is responsive to the availability of multiple nutrients.
    Piper MD; Hong SP; Eissing T; Sealey P; Dawes IW
    FEMS Yeast Res; 2002 Mar; 2(1):59-71. PubMed ID: 12702322
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Regulation of expression of GLT1, the gene encoding glutamate synthase in Saccharomyces cerevisiae.
    Valenzuela L; Ballario P; Aranda C; Filetici P; González A
    J Bacteriol; 1998 Jul; 180(14):3533-40. PubMed ID: 9657994
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Transcriptional induction by aromatic amino acids in Saccharomyces cerevisiae.
    Iraqui I; Vissers S; André B; Urrestarazu A
    Mol Cell Biol; 1999 May; 19(5):3360-71. PubMed ID: 10207060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.