These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 9171383)

  • 81. The DAL81 gene product is required for induced expression of two differently regulated nitrogen catabolic genes in Saccharomyces cerevisiae.
    Bricmont PA; Daugherty JR; Cooper TG
    Mol Cell Biol; 1991 Feb; 11(2):1161-6. PubMed ID: 1990272
    [TBL] [Abstract][Full Text] [Related]  

  • 82. The Ustilago maydis Nit2 homolog regulates nitrogen utilization and is required for efficient induction of filamentous growth.
    Horst RJ; Zeh C; Saur A; Sonnewald S; Sonnewald U; Voll LM
    Eukaryot Cell; 2012 Mar; 11(3):368-80. PubMed ID: 22247264
    [TBL] [Abstract][Full Text] [Related]  

  • 83. ASD4, a new GATA factor of Neurospora crassa, displays sequence-specific DNA binding and functions in ascus and ascospore development.
    Feng B; Haas H; Marzluf GA
    Biochemistry; 2000 Sep; 39(36):11065-73. PubMed ID: 10998244
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Regulation of the urea active transporter gene (DUR3) in Saccharomyces cerevisiae.
    ElBerry HM; Majumdar ML; Cunningham TS; Sumrada RA; Cooper TG
    J Bacteriol; 1993 Aug; 175(15):4688-98. PubMed ID: 8335627
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Overexpression of nreB, a new GATA factor-encoding gene of Penicillium chrysogenum, leads to repression of the nitrate assimilatory gene cluster.
    Haas H; Angermayr K; Zadra I; Stöffler G
    J Biol Chem; 1997 Sep; 272(36):22576-82. PubMed ID: 9278412
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Gcn4 negatively regulates expression of genes subjected to nitrogen catabolite repression.
    Sosa E; Aranda C; Riego L; Valenzuela L; DeLuna A; Cantú JM; González A
    Biochem Biophys Res Commun; 2003 Oct; 310(4):1175-80. PubMed ID: 14559239
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Characterization of an Nmr homolog that modulates GATA factor-mediated nitrogen metabolite repression in Cryptococcus neoformans.
    Lee IR; Lim JW; Ormerod KL; Morrow CA; Fraser JA
    PLoS One; 2012; 7(3):e32585. PubMed ID: 22470421
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Nitrogen catabolite repressible GAP1 promoter, a new tool for efficient recombinant protein production in S. cerevisiae.
    Debailleul F; Trubbia C; Frederickx N; Lauwers E; Merhi A; Ruysschaert JM; André B; Govaerts C
    Microb Cell Fact; 2013 Dec; 12():129. PubMed ID: 24369062
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Isolation and characterization of mutants that produce the allantoin-degrading enzymes constitutively in Saccharomyces cerevisiae.
    Chisholm G; Cooper TG
    Mol Cell Biol; 1982 Sep; 2(9):1088-95. PubMed ID: 6757722
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Nitrogen catabolite repression of arginase (CAR1) expression in Saccharomyces cerevisiae is derived from regulated inducer exclusion.
    Cooper TG; Kovari L; Sumrada RA; Park HD; Luche RM; Kovari I
    J Bacteriol; 1992 Jan; 174(1):48-55. PubMed ID: 1729223
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Identification of the ureidoglycolate hydrolase gene in the DAL gene cluster of Saccharomyces cerevisiae.
    Yoo HS; Genbauffe FS; Cooper TG
    Mol Cell Biol; 1985 Sep; 5(9):2279-88. PubMed ID: 3915539
    [TBL] [Abstract][Full Text] [Related]  

  • 92. UGA4 gene encoding the gamma-aminobutyric acid permease in Saccharomyces cerevisiae is an acid-expressed gene.
    Moretti MB; Batlle A; Garcia SC
    Int J Biochem Cell Biol; 2001 Dec; 33(12):1202-7. PubMed ID: 11606256
    [TBL] [Abstract][Full Text] [Related]  

  • 93.
    Wang YP; Liu L; Wang XS; Hong KQ; Zhang LH; Sun ZG; Xiao DG
    Bioengineering (Basel); 2021 May; 8(5):. PubMed ID: 34066902
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Saccharomyces cerevisiae can secrete Sapp1p proteinase of Candida parapsilosis but cannot use it for efficient nitrogen acquisition.
    Vinterová Z; Bauerová V; Dostál J; Sychrová H; Hrušková-Heidingsfeldová O; Pichová I
    J Microbiol; 2013 Jun; 51(3):336-44. PubMed ID: 23812814
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Genes of Different Catabolic Pathways Are Coordinately Regulated by Dal81 in Saccharomyces cerevisiae.
    Palavecino MD; Correa-García SR; Bermúdez-Moretti M
    J Amino Acids; 2015; 2015():484702. PubMed ID: 26457198
    [TBL] [Abstract][Full Text] [Related]  

  • 96. GATA-type transcriptional factor Gat1 regulates nitrogen uptake and polymalic acid biosynthesis in polyextremotolerant fungus Aureobasidium pullulans.
    Song X; Wang Y; Wang P; Pu G; Zou X
    Environ Microbiol; 2020 Jan; 22(1):229-242. PubMed ID: 31650666
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Machine learning techniques to identify putative genes involved in nitrogen catabolite repression in the yeast Saccharomyces cerevisiae.
    Kontos K; Godard P; André B; van Helden J; Bontempi G
    BMC Proc; 2008 Dec; 2 Suppl 4(Suppl 4):S5. PubMed ID: 19091052
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Nitrogen regulation of fungal secondary metabolism in fungi.
    Tudzynski B
    Front Microbiol; 2014; 5():656. PubMed ID: 25506342
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Proteomics of
    Cruz-Leite VRM; Moreira ALE; Silva LOS; Inácio MM; Parente-Rocha JA; Ruiz OH; Weber SS; Soares CMA; Borges CL
    J Fungi (Basel); 2023 Nov; 9(11):. PubMed ID: 37998907
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Paths to adaptation under fluctuating nitrogen starvation: The spectrum of adaptive mutations in Saccharomyces cerevisiae is shaped by retrotransposons and microhomology-mediated recombination.
    Hays M; Schwartz K; Schmidtke DT; Aggeli D; Sherlock G
    PLoS Genet; 2023 May; 19(5):e1010747. PubMed ID: 37192196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.